You are looking for information, articles, knowledge about the topic nail salons open on sunday near me 개념 원리 rpm 중 3 1 답지 on Google, you do not find the information you need! Here are the best content compiled and compiled by the Chewathai27.com/to team, along with other related topics such as: 개념 원리 rpm 중 3 1 답지 개념원리 rpm 3-2 답지, 개념원리 rpm 3-1 답지 2022, rpm 실력테스트 답지, 개념원리 rpm 3-1 답지 2021, 개념원리 rpm 3-1 pdf, 개념원리 3-1 답지, 개념원리 rpm 1-1 답지, rpm 3-2 답지 2021
2020 개념원리 RPM 중 3-1 답지 정답
- Article author: caac.tistory.com
- Reviews from users: 46199 Ratings
- Top rated: 4.8
- Lowest rated: 1
- Summary of article content: Articles about 2020 개념원리 RPM 중 3-1 답지 정답 안녕하세요! CAAC 입니다. 개념원리 RPM 중 3-1 답지 정답을 올립니다. 개념원리 RPM 중3 상 답지 개념원리 RPM 중3 상 정답 개념원리 RPM 중3 상 … …
- Most searched keywords: Whether you are looking for 2020 개념원리 RPM 중 3-1 답지 정답 안녕하세요! CAAC 입니다. 개념원리 RPM 중 3-1 답지 정답을 올립니다. 개념원리 RPM 중3 상 답지 개념원리 RPM 중3 상 정답 개념원리 RPM 중3 상 … 안녕하세요! CAAC 입니다. 개념원리 RPM 중 3-1 답지 정답을 올립니다. 개념원리 RPM 중3 상 답지 개념원리 RPM 중3 상 정답 개념원리 RPM 중3 상 해설 답지 정답를 올려봅니다. 아래 쭈우욱 내리면 있습니다.^^..
- Table of Contents:
답지책방
2020 개념원리 RPM 중 3-1 답지 정답 본문
티스토리툴바
개념원리 RPM 중학수학 3-1 답지 (2020)
- Article author: dapjibook.com
- Reviews from users: 46026 Ratings
- Top rated: 4.9
- Lowest rated: 1
- Summary of article content: Articles about 개념원리 RPM 중학수학 3-1 답지 (2020) 중학교 개념원리의 답지부터 시작해서 RPM 답지까지 끝이 보이기 시작합니다. 개념원리는 내가 … 아래에 개념원리 RPM 중 3-1 답지가 있습니다. …
- Most searched keywords: Whether you are looking for 개념원리 RPM 중학수학 3-1 답지 (2020) 중학교 개념원리의 답지부터 시작해서 RPM 답지까지 끝이 보이기 시작합니다. 개념원리는 내가 … 아래에 개념원리 RPM 중 3-1 답지가 있습니다. 중학교 개념원리의 답지부터 시작해서 RPM 답지까지 끝이 보이기 시작합니다. 개념원리는 내가 알고 있는 가장 대중적이고 많이 알려진 수학 교재입니다. 수학교재로 사용하는데 필요한 내용들을 고루고루 갖추고..
- Table of Contents:
알피엠(RPM) 수학 중3-1 상 답지(2021)
- Article author: answer-storage.tistory.com
- Reviews from users: 48168 Ratings
- Top rated: 4.6
- Lowest rated: 1
- Summary of article content: Articles about 알피엠(RPM) 수학 중3-1 상 답지(2021) 중3 상의 다른 글. 개념원리 중3-1 상 답지(2021) 개념원리 중3-1 상 답지(2021) 답지를 찾으시나요? 빠른답지와 해설답지를 따로 올려드리고 … …
- Most searched keywords: Whether you are looking for 알피엠(RPM) 수학 중3-1 상 답지(2021) 중3 상의 다른 글. 개념원리 중3-1 상 답지(2021) 개념원리 중3-1 상 답지(2021) 답지를 찾으시나요? 빠른답지와 해설답지를 따로 올려드리고 … 알피엠(RPM) 수학 중3-1 상 답지(2021) 답지를 찾으시나요? 빠른답지와 해설답지를 따로 올려드리고 있습니다. 필요에 따라 다운받아 사용하시면 됩니다. 도움되셨다면 공감♥ 꾹~한번 눌러주시면 더 좋은 자료..
- Table of Contents:
관련글
댓글0
공지사항
최근글
인기글
최근댓글
태그
전체 방문자
개정 알피엠 중등수학3-1 중3상 답지 사진답지 빠른답지 모바일최적화 :: 답지블로그
- Article author: mathuncle.tistory.com
- Reviews from users: 22229 Ratings
- Top rated: 4.6
- Lowest rated: 1
- Summary of article content: Articles about 개정 알피엠 중등수학3-1 중3상 답지 사진답지 빠른답지 모바일최적화 :: 답지블로그 라이트쎈 중3-1 답지, https://mathuncle.tistory.com/20. 라이트쎈 중3-2 답지, https://mathuncle.tistory.com/19. 개념원리 중3-1 답지 … …
- Most searched keywords: Whether you are looking for 개정 알피엠 중등수학3-1 중3상 답지 사진답지 빠른답지 모바일최적화 :: 답지블로그 라이트쎈 중3-1 답지, https://mathuncle.tistory.com/20. 라이트쎈 중3-2 답지, https://mathuncle.tistory.com/19. 개념원리 중3-1 답지 … 중등 전학년 수학교과서 모든출판사 PDF 다운로드링크 https://mathuncle.tistory.com/2314 수학교과서 PDF파일 비상 중3 수학교과서 PDF https://mathuncle.tistory.com/2293 신사고 중3 수학교과서 PDF https:/..중등 수학교과서 모든출판사 PDF 다운로드
https://mathuncle.tistory.com/2314 - Table of Contents:
개정 알피엠 중등수학3-1 중3상 답지 사진답지 빠른답지 모바일최적화
중등 전학년 수학교과서 모든출판사 PDF 다운로드링크
httpsmathuncletistorycom2314
수학교과서 PDF파일
수학교과서 답지
과학문제집 답지
수학문제집 답지
티스토리툴바
개념원리 RPM 3-1 중학수학 3학년 1학기 답지 (2020) : 네이버 블로그
- Article author: m.blog.naver.com
- Reviews from users: 42907 Ratings
- Top rated: 3.7
- Lowest rated: 1
- Summary of article content: Articles about 개념원리 RPM 3-1 중학수학 3학년 1학기 답지 (2020) : 네이버 블로그 개념원리rpm 중학수학 3학년 1학기 답지와 해설입니다. (개념원리rpm 중학수학 3-1 2020). . 필요시에는 하단의 첨부파일을 다운받아 사용하세요. …
- Most searched keywords: Whether you are looking for 개념원리 RPM 3-1 중학수학 3학년 1학기 답지 (2020) : 네이버 블로그 개념원리rpm 중학수학 3학년 1학기 답지와 해설입니다. (개념원리rpm 중학수학 3-1 2020). . 필요시에는 하단의 첨부파일을 다운받아 사용하세요.
- Table of Contents:
카테고리 이동
콩주머니의 블로그
이 블로그
RPM
카테고리 글
카테고리
이 블로그
RPM
카테고리 글
황지니 :: 개념원리 rpm 중학 수학 3-1 답지 올림
- Article author: hjini.tistory.com
- Reviews from users: 23244 Ratings
- Top rated: 4.0
- Lowest rated: 1
- Summary of article content: Articles about 황지니 :: 개념원리 rpm 중학 수학 3-1 답지 올림 며칠전 여러 학생이 찾으셨던 답지인 개념원리 rpm 중학 수학 3-1 답지를 올립니다. 이 글 아래 부분에 올려두었으니 스크롤을 휙휙 내리셔서 …
- Most searched keywords: Whether you are looking for 황지니 :: 개념원리 rpm 중학 수학 3-1 답지 올림 며칠전 여러 학생이 찾으셨던 답지인 개념원리 rpm 중학 수학 3-1 답지를 올립니다. 이 글 아래 부분에 올려두었으니 스크롤을 휙휙 내리셔서 오랜만이에요 황지니에요~ 며칠전 여러 학생이 찾으셨던 답지인 개념원리 rpm 중학 수학 3-1 답지를 올립니다. 이 글 아래 부분에 올려두었으니 스크롤을 휙휙 내리셔서 다운받아가면 된답니다. ^^ 지금 업로드해..
- Table of Contents:
ZUAKI’s info :: rpm 중3-1 (답지)
- Article author: zuaki.tistory.com
- Reviews from users: 49677 Ratings
- Top rated: 3.4
- Lowest rated: 1
- Summary of article content: Articles about ZUAKI’s info :: rpm 중3-1 (답지) 오늘은 개념원리 rpm 중학교 3학년 1학기 답지입니다. 중학3학년 상 인데요~~. 필요하신분 다운받아가세요. 제 블로그는 네이버 블로그가 아니다 … …
- Most searched keywords: Whether you are looking for ZUAKI’s info :: rpm 중3-1 (답지) 오늘은 개념원리 rpm 중학교 3학년 1학기 답지입니다. 중학3학년 상 인데요~~. 필요하신분 다운받아가세요. 제 블로그는 네이버 블로그가 아니다 … 주아키입니다. 오늘은 개념원리 rpm 중학교 3학년 1학기 답지입니다. 중학3학년 상 인데요~~ 필요하신분 다운받아가세요. 제 블로그는 네이버 블로그가 아니다 보니 접근성이 떨어지는게 사실이에요. 즐겨찾기 해..
- Table of Contents:
2020 개념원리 RPM 중 3-1 답지 정답
- Article author: 123dok.co
- Reviews from users: 28352 Ratings
- Top rated: 4.1
- Lowest rated: 1
- Summary of article content: Articles about 2020 개념원리 RPM 중 3-1 답지 정답 2020 개념원리 RPM 중 3-1 답지 정답. … 3-1. 정답과 풀이. (2) 01. 제곱근과 실수. Ⅰ. 실수와 그 연산. 0021. … 0048 무한소수 중 순환소수는 유리수이다.. _. …
- Most searched keywords: Whether you are looking for 2020 개념원리 RPM 중 3-1 답지 정답 2020 개념원리 RPM 중 3-1 답지 정답. … 3-1. 정답과 풀이. (2) 01. 제곱근과 실수. Ⅰ. 실수와 그 연산. 0021. … 0048 무한소수 중 순환소수는 유리수이다.. _. 2020 개념원리 RPM 중 3-1 답지 정답download documents
- Table of Contents:
전체 글
수치
참조
관련 문서
2014 개념원리 RPM 확률과통계 답지 정답
2020 개념원리 RPM 미적분 답지 정답
2020 개념원리 RPM 기하 답지 정답
2020 개념원리 RPM 기하 답지 정답
2020 개념원리 RPM 중 2-1 답지 정답
2020 개념원리 중 3-2 답지 정답
2020 개념원리 중 3-1 답지 정답
2020 개념원리 RPM 중 2-2 답지 정답
2020 개념원리 RPM 중 2-2 답지 정답
2020 개념원리 RPM 중 1-2 답지 정답
2020 개념원리 RPM 중 1-2 답지 정답
2020 개념원리 RPM 중 1-1 답지 정답
관련 문서
2020 연마수학 중 1-1 답지 정답
2020 수력충전 중 3-1 답지 정답
2020 개념원리 중2-1 답지 정답
2014 개념원리 RPM 미적분2 답지 정답
2020 개념원리 중1-1 답지 정답
2014 개념원리 RPM 미적분1 답지 정답
2014 개념원리 RPM 기하와벡터 답지 정답
2020 개념원리 RPM 확률과통계 답지 정답
2020 개념원리 RPM 확률과통계 답지 정답
2014 개념원리 RPM 확률과통계 답지 정답
2020 개념원리 RPM 미적분 답지 정답
2020 개념원리 RPM 기하 답지 정답
2020 개념원리 RPM 기하 답지 정답
2020 개념원리 RPM 중 2-1 답지 정답
2020 개념원리 중 3-2 답지 정답
2020 개념원리 중 3-1 답지 정답
2020 개념원리 RPM 중 2-2 답지 정답
2020 개념원리 RPM 중 2-2 답지 정답
2020 개념원리 RPM 중 1-2 답지 정답
2020 개념원리 RPM 중 1-2 답지 정답
2020 개념원리 RPM 중 1-1 답지 정답
2020 개념원리 RPM 중 1-1 답지 정답
2020 체크체크 수학 중 3-1 답지 정답
개념원리 RPM 알피엠 중학 수학 3-1(2022) | 이홍섭 | 개념원리 – 교보문고
- Article author: www.kyobobook.co.kr
- Reviews from users: 45293 Ratings
- Top rated: 3.6
- Lowest rated: 1
- Summary of article content: Articles about 개념원리 RPM 알피엠 중학 수학 3-1(2022) | 이홍섭 | 개념원리 – 교보문고 서울특별시 종로구 세종대로 기준 지역변경 지금 주문하면 오늘(20일,수)도착 예정 ? ? 판매상태. 판매중 매장 재고/위치. 바로드림. 매장에서 픽업 안내. …
- Most searched keywords: Whether you are looking for 개념원리 RPM 알피엠 중학 수학 3-1(2022) | 이홍섭 | 개념원리 – 교보문고 서울특별시 종로구 세종대로 기준 지역변경 지금 주문하면 오늘(20일,수)도착 예정 ? ? 판매상태. 판매중 매장 재고/위치. 바로드림. 매장에서 픽업 안내. 다양한 유형의 문제를 통해 수학의 문제해결력을 높일 수 있는 알피엠 | [특장점]1. 전국 중학교 문제를 철저히 분석, 분류하여 유형을 세밀하게 나누어 수학의 모든 유형을 완벽히 마스터할 수 있도록 하였습니다. 2. 각 유형의 모든 문제를 난이도별로 분류하였습니다. 전체 구성을 5단계로 구성하고, 이 중 유형 익히기와 유형 up은 하,…개념원리 RPM 알피엠 중학 수학 3-1(2022), 이홍섭, 개념원리, 9788961334679
- Table of Contents:
키워드 Pick
가격정보
이 상품의 이벤트 1건
배송정보
이 책을 구매하신 분들이 함께 구매하신 상품입니다 KOR (개인)
이 책의 이벤트
책소개
목차
Klover 리뷰 (0)
북로그 리뷰 (0)
쓰러가기
문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매 후 문장수집 작성 시 리워드를 제공합니다
안내
문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여주는 교보문고의 새로운 서비스입니다
마음을 두드린 문장들을 기록하고 좋은 글귀들은 좋아요하여 모아보세요
도서 문장과 무관한 내용 등록 시 별도 통보 없이 삭제될 수 있습니다
1 리워드 안내
구매 후 90일 이내에 문장수집 작성 시 e교환권 100원을 적립해 드립니다
e교환권은 적립일로부터 180일 동안 사용 가능합니다
리워드는 작성 후 다음 날 제공되며 발송 전 작성 시 발송 완료 후 익일 제공됩니다
리워드는 한 상품에 최초 1회만 제공됩니다
주문취소반품절판품절 시 리워드 대상에서 제외됩니다
교환반품품절안내
기프트 BEST
이 분야의 베스트
이 분야의 신간
개념원리 RPM 알피엠 중학 수학 3-1 (2022년용) – YES24
- Article author: www.yes24.com
- Reviews from users: 11872 Ratings
- Top rated: 3.4
- Lowest rated: 1
- Summary of article content: Articles about 개념원리 RPM 알피엠 중학 수학 3-1 (2022년용) – YES24 다양한 유형의 문제를 통해 수학의 문제해결력을 높일 수 있는 문제기본서이다. …
- Most searched keywords: Whether you are looking for 개념원리 RPM 알피엠 중학 수학 3-1 (2022년용) – YES24 다양한 유형의 문제를 통해 수학의 문제해결력을 높일 수 있는 문제기본서이다. 다양한 유형의 문제를 통해 수학의 문제해결력을 높일 수 있는 문제기본서이다. 개념원리 RPM 알피엠 중학 수학 3-1 (2022년용),분철,이홍섭, 개념원리, 9788961334679, 89613346709788961334679,8961334670
- Table of Contents:
YES24 카테고리 리스트
YES24 유틸메뉴
어깨배너
빠른분야찾기
윙배너
슈퍼특가
이책아나!
김정현 아나운서가 추천하는 인생 도서
마이 예스24
최근 본 상품
단독 판매
마케팅 텍스트 배너
웹진채널예스
개념원리 RPM 알피엠 중학 수학 3-1 (2022년용)
개념원리 RPM 알피엠 중학 수학 3-1 (2022년용)
See more articles in the same category here: Chewathai27.com/to/blog.
개념원리 RPM 중학수학 3-1 답지 (2020)
중학교 개념원리의 답지부터 시작해서 RPM 답지까지 끝이 보이기 시작합니다. 개념원리는 내가 알고 있는 가장 대중적이고 많이 알려진 수학 교재입니다. 수학교재로 사용하는데 필요한 내용들을 고루고루 갖추고 있어서 누가 보더라도 불만 없이 풀어볼수가 있습니다. 잘 짜여진 프로그램으로 수학교재로써의 역할을 하고 있습니다. 아래에 개념원리 RPM 중 3-1 답지가 있습니다.
정답을 확인하고 내 점수가 높지 않았을 때의 상실감은 이루 말할수 없습니다. 그래도 다행인것은 지금 점수가 낮다고 해서 시험에서 낮으리란 법은 없습니다. 부족하기 때문에 교재를 구입해서 공부를 하는 것입니다. 그러니까 부족한 부분은 보강을 하면 됩니다.
위를 보면 개념원리 RPM 중학 수학 3-1 답지가 있습니다. 해당 답지를 확인하고 그냥 끄지 말아주세요. 답지를 그대로 두고 다시 한번 문제를 풀어보는 것도 좋은 공부 방법입니다. 특히 오답은 집중적으로 다시 한번 풀어보세요. 답지는 구글 드라이브로 연결되어 있습니다.
개정 알피엠 중등수학3-1 중3상 답지 사진답지 빠른답지 모바일최적화
반응형
중등 전학년 수학교과서 모든출판사 PDF 다운로드링크
수학교과서 PDF파일
비상 중3 수학교과서 PDF https://mathuncle.tistory.com/2293 신사고 중3 수학교과서 PDF https://mathuncle.tistory.com/1763 미래엔 중3 수학교과서 PDF https://mathuncle.tistory.com/1256 천재교육 류희찬 중3 수학교과서 PDF https://mathuncle.tistory.com/945 천재교육 이준열 중3 수학교과서 PDF https://mathuncle.tistory.com/942 동아출판 박교식 중3 수학교과서 PDF https://mathuncle.tistory.com/1253 동아출판 강옥기 중3 수학교과서 PDF https://mathuncle.tistory.com/1250 금성출판사 중3 수학교과서 PDF 교학사 고호경 중3 수학교과서 PDF
수학교과서 답지
비상 중3 수학교과서 답지 https://mathuncle.tistory.com/1135 신사고 중3 수학교과서 답지 https://mathuncle.tistory.com/1132 미래엔 중3 수학교과서 답지 https://mathuncle.tistory.com/1129 천재교육 류희찬 중3 수학교과서 답지 천재교육 이준열 중3 수학교과서 답지 동아출판 박교식 중3 수학교과서 답지 https://mathuncle.tistory.com/2307 동아출판 강옥기 중3 수학교과서 답지 https://mathuncle.tistory.com/2321 금성출판사 중3 수학교과서 답지 https://mathuncle.tistory.com/2318 교학사 고호경 중3 수학교과서 답지
과학문제집 답지
오투과학 3-1 답지 https://mathuncle.tistory.com/27 오투과학 3-2 답지 https://mathuncle.tistory.com/28 완자중등과학중3답지 https://mathuncle.tistory.com/310
수학문제집 답지
쎈수학 3-1 답지 https://mathuncle.tistory.com/2177 쎈수학 3-2 답지 https://mathuncle.tistory.com/2178 라이트쎈 중3-1 답지 https://mathuncle.tistory.com/20 라이트쎈 중3-2 답지 https://mathuncle.tistory.com/19 개념원리 중3-1 답지 https://mathuncle.tistory.com/269 개념원리 중3-2 답지 https://mathuncle.tistory.com/268 개념쎈 중3-1 답지 https://mathuncle.tistory.com/193 개념쎈 중3-2 답지 https://mathuncle.tistory.com/194 일품중등수학 3-1 답지 https://mathuncle.tistory.com/155 일품중등수학 3-2 답지 https://mathuncle.tistory.com/156
개념플러스유형 라이트편 중3-1 답지 https://mathuncle.tistory.com/33 개념플러스유형 라이트편 중3-2 답지 https://mathuncle.tistory.com/34 블랙라벨 중학수학 3-1 답지 https://mathuncle.tistory.com/959 블랙라벨 중학수학 3-2 답지 https://mathuncle.tistory.com/957 우공비큐 표준편 3-1 답지 https://mathuncle.tistory.com/309 우공비큐 표준편 3-2 답지 https://mathuncle.tistory.com/345 쎈B 3-1 답지 https://mathuncle.tistory.com/1583 쎈B 3-2 답지 개념원리 알피엠 중3-1 답지 https://mathuncle.tistory.com/137 개념원리 알피엠 중3-2 답지 https://mathuncle.tistory.com/138
개정 알피엠 중등수학3-1 중1상 답지 사진답지 빠른답지 모바일최적화
다운로드 받을필요 없이 바로 볼수 있는 모바일에 최적화된 답지 입니다
필요한 답지가 있다면 댓글로 신청해주세요
최대한 빨리 찾아서 올려드리겠습니다
개정 알피엠 중등수학3-1 중1상 답지 사진답지 빠른답지 모바일최적화
반응형
2020 개념원리 RPM 중 3-1 답지 정답
(1) 문제기본서. [알피엠]. 중학수학. 3-1. 정답과 풀이.
(2) 01. 제곱근과 실수. Ⅰ. 실수와 그 연산. 0021. -21. 0022. -3.2. 본문 p. 9, 11. 0001. 0023 (주어진 식)=3+2=5. 5. 0024 (주어진 식)=9-6=3. 3. 0025 (주어진 식)=10_0.3=3. 3. 0. 0002. 3,. 0003. 없다.. 0004. 16,. 0005. 0.7,. -3. -16. 0026 (주어진 식)=;6%;Ö;3%;=;6%;_;5#;=;2!;. -0.7. 0027 a>0일 때, 2a>0, -7a<0이므로. ;2!;. (주어진 식) =2a+{-(-7a)} 2 2 ,11 11. 0006. . 0007. Ñ'¶10. 0008. Ñ'¶29. 0009. Ñ'¶3.8. 0010. Ñ®Â. 0011. 3. 0012. -5. 0013. Ñ10. 0014. 0.6. 0015. -1.5. 0016. =2a+7a=9a. 0028 a>0일 때, -3a<0, -4a<0이므로 (주어진 식) =-(-3a)-{-(-4a)} =3a-4a=-a. -a. 0029 a<0일 때, 5a<0, -8a>0이므로 (주어진 식) =-5a-(-8a) =-5a+8a=3a. 6 35. Ñ;9*;. 9a. 3a. 0030 a<0일 때, -4a>0, -a>0이므로 -5a. (주어진 식)=-4a+(-a)=-5a. 0031. <. 0032. >. 0033 4=’16이므로 ‘13<4. <. 1 0034 ;2!;=®;4!;이므로 2 <®;2!;. <. 0035 '21<'22이므로 -'21>-‘22. >. 0017. 8. 0018. 35. ∴ -‘19<-4. 0019. -43. 0037 2<'§xÉ3의 각 변을 제곱하면. 0036 4='16이므로 '19>4 <. 4
0 ∴ -‘2+’10>-‘3+’10. 무. >. 0063 (4-‘3)-(‘15-‘3)=4-‘15=’16-‘15>0. ®;9$;=¾¨{;3@;}Û`=;3@;이므로 유리수이다.. 유. ∴ 4-‘3>’15-‘3. >. . 0048 무한소수 중 순환소수는 유리수이다.. _. 0049 순환소수는 유리수이다.. _. _. . 0053 ®É;1»6; =¾¨{;4#;}Û`=;4#;이므로 유리수이다.. _. 0054 ‘2§5=”5Û`=5이므로 유리수이다.. . 0055 ACÓ=”Ã1Û`+1Û`=’2이므로 P : 1+’2,. Q : 1-‘2. 0056 ACÓ=”Ã1Û`+2Û`=’5이므로 점 Q에 대응하는 수는 -‘5. ④ ‘2§5=5의 제곱근은 Ñ’5이다. ⑤ -‘2는 2의 음의 제곱근이다. 따라서 옳은 것은 ④이다.. ④. 0065 x가 7의 제곱근이므로 x=Ñ’7. ②. 0066 aÛ`=16, bÛ`=25이므로 aÛ`+bÛ`=41. 41. 0067 ①, ②, ④, ⑤ Ñ3 ③ ‘9=3. ③. 0068 (-4)Û`=16의 양의 제곱근은 4이므로 A=4. 점 P에 대응하는 수는 1+’2. 점 P에 대응하는 수는 ‘5. 0064 ① 제곱근 13은 ‘13이다. ③ 음수의 제곱근은 없다.. 수 있다.. 점 Q에 대응하는 수는 1-‘2. 본문 p.12~23. ② 0.2Û`=(-0.2)Û`=0.04이므로 0.04의 제곱근은 Ñ0.2이다.. . 0051 정수가 아닌 유리수는 유한소수 또는 순환소수로 나타낼. 0052. <. ∴ '13-2<'13-1. 유. 0050. <, <. 0060 ('13-2)-('13-1)=-1<0. 0044 8.232323y=8.H2H3이므로 유리수이다.. 0047. . Q : 1-'5. ∴ '5+1<4. 유. 0046. 0058. P : 1+'5,. 0059 ('5+1)-4='5-3='5-'9<0. 0043 "Ã(-1)Û`=1이므로 유리수이다.. 0045. 점 Q에 대응하는 수는 1-'5. '16=4의 음의 제곱근은 -2이므로 B=-2. 6. ∴ A-B=6. 0069 ③ '¶36=6의 제곱근은 Ñ'6이다. P : '5,. ④ '2¶25="15Û`=15의 제곱근은 Ñ'15이다. Q : -'5. ⑤ (-0.5)Û`=0.25의 제곱근은 Ñ0.5이다. . ③, 01. 제곱근과 실수. ⑤. 3. (4) 64 0070 제곱근 9 는 ;3*;이므로 A=;3*;. 0.H4=;9$; ⇨ Ñ®;9$;=Ñ;3@;. '6¶25=25의 음의 제곱근은 -5이므로 B=-5. . 81 ⇨ Ñ®É;1¥2Á1;=Ñ;1»1; 121. . 따라서 제곱근을 근호를 사용하지 않고 나타낼 수 있는 것은 . ∴ 3A-B=3_;3*;-(-5)=13. 1 81 , 1.69, 0.H4, 의 4개이다. 36 121. 4개. 13 단계. 채점요소. 배점. . A의 값 구하기. 40 %. . B의 값 구하기. 40 %. . 3A-B의 값 구하기. 20 %. 0075 ㄱ. '¶625=25의 제곱근은 Ñ5 ㄴ. 정사각형의 한 변의 길이를 a라 하면 aÛ`=49 . 이때 a>0이므로 a=7 ㄷ. 정육면체의 한 모서리의 길이를 a라 하면 6aÛ`=90, aÛ`=15 . 0071 한 변의 길이가 2`cm인 정사각형의 넓이는 4`cmÛ`, 한 변의 길이가 4`cm인 정사각형의 넓이는 16`cmÛ`이므로 두 정사. 이때 a>0이므로 a=’15 따라서 근호를 사용하지 않고 나타낼 수 있는 것은 ㄱ, ㄴ이다.. 각형의 넓이의 합은. ㄱ,. ㄴ. 4+16=20 (cmÛ`) 넓이가 20`cmÛ`인 정사각형의 한 변의 길이를 x`cm라 하면 . 0076 ② ‘0¶.09=”0.3Û`=0.3. xÛ`=20. ⑤ -®Â;4¢9;=-®É{;7@;}Û`=-;7@;. 이때 x>0이므로 x=’20 따라서 구하는 정사각형의 한 변의 길이는 ‘20`cm이다.. ⑤. ④. 0077 ① 5 ①. ②, ③, ④, ⑤ -5. 0072 ① ‘2¶56=16의 제곱근은 Ñ’16=Ñ4 ② ‘0¶.09=0.3의 제곱근은 Ñ’¶0.3. 1 0078 ¾¨{-;4!;}Û`=;4!;의 양의 제곱근은 ;2!;이므로 A= 2. ③ ®Â;8!1^; =;9$;의 제곱근은 Ñ®;9$; =Ñ;3@; ④ ®Â. 4 =;5@;의 제곱근은 Ñ®;5@; 25. ⑤ 2.H7=. (‘10 )Û`=10의 음의 제곱근은 -‘10이므로 B=-‘10 ∴ ABÛ`=;2!;_(-‘10 )Û`=;2!;_10=5. 25 25 의 제곱근은 Ѯ =Ñ;3%; 9 9. 따라서 제곱근을 근호를 사용하지 않고 나타낼 수 없는 것은 ②, ④이다.. ②,. ④. “(Ã-6)Û`=6이므로 작은 것부터 차례로 나열하면. 따라서 세 번째에 오는 수는 (-‘3 )Û`이다. . ② ‘1¶21=11 1 1 = 144 12. (-‘3 )Û`. 3 0080 (주어진 식) =”11Û`-3Ö¾¨{ 5 }Û` -4 . 289 17 ⑤ -¾¨ =36 6. 5 =11-3_ -4 3. 따라서 근호를 사용하지 않고 나타낼 수 없는 것은 ③이다. ③. 0074 주어진 수의 제곱근을 각각 구하면. 0079 “Å7`Û =7, (-‘3 )`Û =3, -“Å5`Û =-5, -(-‘2 )`Û =-2, -“Å5Û`, -(-‘2 )Û`, (-‘3 )Û`, “(Ã-6)Û`, “Å7Û`. 0073 ① ‘1¶69=13 ④ ¾¨. 5. =11-5-4=2. ③. 0081 (주어진 식)=5+7-6=6. ④. 28 ⇨ Ñ’¶28 ;3Á6; ⇨ Ñ®Â;3Á6;=Ñ;6!; 1.69 ⇨ Ñ’Ä1.69=Ñ1.3. 4. 정답과 풀이. 0082 (주어진 식) =3-6Ö(-9) =3+;3@;=. 11. 3. ⑤. (5) 0083 (주어진 식) =8-“Å9Û`+”1Å3Û`_(-4) . -“(Ã5a)Û`=-(-5a)=5a<0. =8-9+13_(-4) . (-"Ã-a )Û`=-a>0. =8-9-52=-53. ①. -“(Ã-a)Û`=-(-a)=a<0 따라서 그 값이 양수인 것은 "(Ã-a)Û`, (-'¶-a)Û`의 2개이다.. 6 ¾{¨ }Û`Ö"Ã0.2Û`_;3@; 0084 (주어진 식) = 5 6 = Ö0.2_;3@; 5. 2개. 0091 ㄱ. -a>0이므로 -“(Ã-a)Û`=-(-a)=a. 6 = _5_;3@;=4 5. ④. ㄴ. 2a<0이므로 "Ã(2a)Û`=-2a . ㄷ. "36aÛ`="(Ã6a)Û`이고 6a<0이므로. -"36aÛ`=-"(Ã6a)Û`=-(-6a)=6a. 1 0085 A ="Å7Û`-3_ 3 +"(Ã2_5)Û`=7-1+2_5 . ㄹ. -3a>0이므로 “(Ã-3a)Û`=-3a. ∴ ‘¶A=’16=4. ③. 0092 -4a<0, -b>0이므로 (주어진 식) = -(-4a)-3_(-b). 0086 2aÛ`+bÛ`-3cÛ` =2_(‘5`)Û`+(-‘2`)Û`-3_(‘6`)Û` . =4a+3b. =2_5+2-3_6 =10+2-18=-6. ③. 따라서 옳은 것은 ㄱ, ㄹ이다. . =7-1+10=16. ①. -6. 0093 -2a<0, 3a>0이므로. (주어진 식) =”(Ã-2a)Û`-“(Ã3a)Û`. 0087 A =’§64-“Ã(-5)Û`+”3Û`-(-‘7 )Û` . =-(-2a)-3a . =”8Û`-5+3-7 . =2a-3a=-a. =8-5+3-7=-1. ④. . 1 B =(‘¶0.9 )Û`Ö(-‘¶0.1 )Û`_¾¨{ }Û`+”Ã(-11)Û` 3 1 =0.9Ö0.1_ +11 3. 0094 3a<0, 9a<0, -5a>0이므로. (주어진 식) =”Ã(3a)Û`+”Ã(9a)Û`-“(Ã-5a)Û`. =-3a+(-9a)-(-5a) . =-3a-9a+5a=-7a. 1 =9_ +11=3+11=14 3 . ∴ A+B=13. ③. 0095 a-b>0에서 a>b이고, ab<0에서 a, b의 부호가 서 로 반대이므로 a>0, b<0, -2a<0 . 13 단계. 채점요소. . ∴ "aÛ`-"Ã(-2a)Û`+"bÛ`=a-{-(-2a)}+(-b) . 배점. . A의 값 구하기. 40 %. . B의 값 구하기. 40 %. . A+B의 값 구하기. 20 %. = a-2a-b . =-a-b . 0088 ④ -"9aÛ`=-"Ã(3a)Û`=-3a 0089 "Ã64aÛ`="Ã(8a)Û`이고 8a<0이므로. "Ã64aÛ`="Ã(8a)Û`=-8a. 0090 a<0일 때, -a>0이므로 “(Ã-a)Û`=-a>0. -“aÛ`=-(-a)=a<0. ④. ②. 단계. 채점요소. -a-b 배점. . a, b, -2a의 부호 판별하기. 40 %. . 근호 없애기. 40 %. . 식을 간단히 하기. 20 %. 0096 -10이므로 (주어진 식) =-(a-2)-(1+a) =-a+2-1-a=-2a+1. 01. 제곱근과 실수. ①. 5.
(6) 0097 x<5에서 x-5<0, 5-x>0이므로 (주어진 식) = -(x-5)+(5-x). 단계. =-x+5+5-x =-2x+10. ②. 0098 20이므로. =-2+a+6-2a. . n=3_(자연수)Û`의 꼴임을 알기. 30 %. . n의 값 구하기. 50 %. . 모든 n의 값의 합 구하기. 20 %. 약수이면서 2_5_(자연수)Û`의 꼴이어야 한다.. 따라서 가장 작은 자연수 x의 값은. =-a+4. 배점. 360 2Ü`_3Û`_5 가 자연수가 되려면 x는 360의 0104 ¾¨ x =¾¨ x. 6-2a=2(3-a)>0 ∴ (주어진 식) =-(2-a)+(6-2a). 채점요소. -a+4. 2_5=10. ③. 0099 a-b<0에서 a0. 면서 3_(자연수)Û`의 꼴이어야 한다.. ∴ 5a<0, b-a>0, -b<0. 따라서 가장 작은 두 자리 자연수 x의 값은. ∴ (주어진 식) =-5a-(b-a)-{-(-b)} . 3_2Û`=12. =-5a-b+a-b . 12. . =-4a-2b . -4a-2b. 0100 252x=2Û`_3Û`_7_x이므로 x=7_(자연수)Û`의 꼴이. 504 0106 ¾¨ n 가 가장 큰 자연수가 되려면 n은 가장 작은 자연 수이어야 한다. . 어야 한다. 이때 ¾¨. 따라서 가장 작은 두 자리 자연수 x의 값은 7_2Û`=28. 504 2Ü`_3Û`_7 =¾¨ 이므로 n n. ③. . n은 504의 약수이면서 2_7_(자연수)Û`의 꼴이어야 한다.. 0101. 40a 2Ü`_5_a = 이므로 a=2_3_5_(자연수)Û ` 의 3 3. 따라서 가장 작은 자연수 n의 값은 2_7=14. 꼴이어야 한다. 따라서 가장 작은 자연수 a의 값은 . . 2_3_5=30. 14. 30 단계. 0102 56a=2Ü`_7_a이므로 a=2_7_(자연수)Û`의 꼴이어. . n이 가장 작은 자연수일 때 ¾¨:°;n);¢: 가 가장 큰 자연수임을. 배점 20 %. 알기. 야 한다. 이때 1‘2이므로 -‘5<-'2 1 1 > ‘2 ‘3 1 ④ ;3!;=®;9!;이므로 ;3!;>¾¨ 10 ③ 0<'2<'3이므로. ⑤ 0.7='\Ä0.49이므로 '¶0.7>0.7 ⑤. 따라서 대소 관계가 옳지 않은 것은 ⑤이다.. 0111. ‘4Ä6+m이 자연수가 되려면 46+m은 46보다 큰 제곱. 수이어야 한다. 46+m=49 ∴ m=3. 따라서 작은 것부터 차례로 나열하면. m=3일 때, n=’Ä46+3=’49=7. 0112. ③. ‘2Ä5-x가 정수가 되려면 25-x는 25보다 작은 제곱수. 또는 0이어야 한다. x=25, 24, 21, 16, 9. 0113. 1 -‘2, -¾ , 0, ;3@;, ‘3 2. ③. ‘1Ä4-x가 정수가 되려면 14-x는 14보다 작은 제곱수. 1 -®É;1Á6;=-;4!;, ¾¨{-;9$;}Û`=;9$;, =;2!;이므로 ‘4. 1 ¾¨{-;9$;}Û`< <'17 ∴ n='17 '4 -'8<-®É;1Á6; ∴ m=-'8. ∴ mÛ`+nÛ`=(-'8 )Û`+('17 )Û`=8+17=25 . 또는 0이어야 한다.. 0118. x=14, 13, 10, 5. 1 ① ®;a!;='4=2 ② =4 a. 14+13+10+5=42. 42. ④ a=;4!; . ⑤ aÛ`=. ③ 'a=®;4!;=;2!;. 1. 16 ②. 따라서 그 값이 가장 큰 것은 ②이다. . 0114. '¶2Ä8-x가 자연수가 되려면 28-x는 28보다 작은 제곱. 다른 풀이. 수이어야 한다.. ① ®;a!;>1 . 1 ② >1 a. 즉, 28-x=1, 4, 9, 16, 25이므로. ④ 0¾ 이므로 -‘2<-®;2!; 2. 4 ;3@;=¾ 이므로 ;3@;<'3 9. 이때 46보다 큰 제곱수 중에서 가장 작은 수는 49이므로. ∴ m+n=10. 0116. ③ 0<'a<1. . 1 1 이때 >®;a!;이므로 의 값이 가장 크다. a a. . 0119. 따라서 M=27, m=3이므로 2=’4에서 2<'5이므로. 2+'5>0, 2-‘5<0. M-m=24 24. ∴ (주어진 식) =(2+'5 )-{-(2-'5 )} =2+'5+2-'5=4. ② 01. 제곱근과 실수. 7. (8) 0120 1='1, 3='9에서 1<'5<3이므로. 0126 1<'x<2의 각 변을 제곱하면 1
0, 1-‘5<0. 만족시키는 자연수 x는 2, 3이다.. ∴ (주어진 식) =(3-'5 )-(1-'5 ). . =3-'5-1+'5=2. ③. 또 '2 0 ∴ (주어진 식) =-(3-‘10) +(4-‘10 ). 구하는 합은. =-3+’10+4-‘10=1. 1. 2+3=5 5. 0122 2=’4에서 2<'7이므로 2-'7<0, '7-2>0. 단계. ∴ (주어진 식) = -(2-‘7)-(‘7-2)-2+7 =-2+’7-‘7+2-2+7=5. ⑤. 0123 8<'¶7x<10의 각 변을 제곱하면 64<7x<100 ∴. . 1<'x<2를 만족시키는 자연수 x의 값 구하기. 40 %. . '2 0 ∴ 3>’3-1. 0136 실수는 유리수와 무리수로 이루어져 있으므로 a-b의. ② (‘3+1)-(‘3+’2 )=1-‘2=’1-‘2<0. 값은 무리수의 개수와 같다.. ∴ '3+1<'3+'2. 무리수는 p, 'Ä0.001, -'¶2.5의 3개이므로 a-b=3 . ②. ③ ('3+'2 )-('5+'2 )='3-'5<0 ∴ '3+'2<'5+'2. 0137 APÓ=ABÓ="Ã1Û`+1Û`='2,. ④ (3+'7 )-('7+'8 )=3-'8='9-'8>0. CQÓ=CDÓ=”Ã1Û`+1Û`=’2이므로. ∴ 3+’7>’7+’8. ㄱ. 점 P에 대응하는 수는 -2-‘2이다.. ⑤ (2-‘3 )-(‘5-‘3 )=2-‘5=’4-‘5<0. ㄴ. 점 Q에 대응하는 수는 -1+'2이다.. ∴ 2-'3<'5-'3. ㄷ. 두 점 P, Q에 대응하는 두 수의 합은 . 따라서 옳은 것은 ⑤이다.. ⑤. (-2-'2 )+(-1+'2 )=-3 ㄴ,. 따라서 옳은 것은 ㄴ, ㄷ이다.. ㄷ. 0138 APÓ=ABÓ="Ã1Û`+3Û`='10이므로 점 P에 대응하는 수. 는 -1+'10이다.. -1+'10 . 0139 APÓ=ABÓ="Ã2Û`+3Û`='13이므로 점 P에 대응하는 수 는 2-'13. AQÓ=ACÓ="Ã3Û`+1Û`='10이므로 점 Q에 대응하는 수는. . ∴ '15+2 > 5 ② (2+’7 )-(‘7+’3 )=2-‘3=’4-‘3>0 ∴ 2+’7 > ‘7+’3 ③ (-4-‘6 )-(-‘13-‘6 ) =-4+’13. =-‘16+’13<0 ∴ -4-'6 < -'13-'6 ④ (8-'8 )-4=4-'8='16-'8>0 ∴ 8-‘8 > 4. 2+’10. P : 2-‘13,. 0144 ① (‘15+2)-5=’15-3=’15-‘9>0. Q : 2+’10. ⑤ {‘18-“Ã(-3)Û` }-(‘15-3) =’18-3-‘15+3. =’18-‘15>0. 01. 제곱근과 실수. 9. (10) 0149 -1-‘3은 음수이고 2, 1+’3, ‘2+’3은 양수이다.. ∴ ‘18-“Ã(-3)Û` > ‘15-3 ③. 따라서 부등호가 나머지 넷과 다른 하나는 ③이다.. 2-(1+’3 )=1-‘3<0 ∴ 2<1+'3 (1+'3 )-('2+'3 )=1-'2<0 ∴ 1+'3<'2+'3 ∴ -1-'3<2<1+'3<'2+'3. 0145 ㄱ. (4-'7 )-(-'10+4)=-'7+'10>0. 1+’3. 따라서 세 번째에 오는 수는 1+’3이다. . ∴ 4-‘7>-‘10+4 ㄴ. (‘5-‘2 )-(‘5-1)=-‘2+1<0. 0150 '4<'7<'9에서 2<'7<3이므로. ∴ '5-'2<'5-1. 2-3<'7-3<3-3. ㄷ. ('7+4)-6='7-2='7-'4>0. ∴ -1<'7-3<0. ∴ '7+4>6 ㄹ. (-3+’3 )-{‘3-“Ã(-5)Û` }=-3+’3-‘3+5=2>0 ∴ -3+’3>’3-“Ã(-5)Û`. ③. 따라서 ‘7-3에 대응하는 점은 C이다. . 0151 ‘2§5<'2§7<'3§6에서 5<'2§7<6. ㅁ. (2+'10 )-('10+'3 )=2-'3='4-'3>0. 따라서 ‘2§7에 대응하는 점은 C이다.. ∴ 2+’10>’10+’3 ④. 따라서 옳은 것은 ㄴ, ㄷ, ㅁ이다. . 점. C. 0152 ‘9<'10<'1§6에서 3<'10<4이므로 3+2<'10+2<4+2. 0146 a-b=('5+'3 )-('5+1)='3-1>0이므로. ∴ 5<'10+2<6. a>b. 따라서 ‘10+2에 대응하는 점이 있는 구간은 D이다.. ④. a-c=(‘5+’3 )-(3+’3 )=’5-3=’5-‘9<0이므로 a
0 ∴ x>z . 본문 p.24. ∴ z b) 3. ∴ b-a=3 . ∴ a-2b-6=14-2_(-14)-6=36 ③. 따라서 36의 양의 제곱근은 6이다.. 0156 ‘1¶21<'1¶25<'1¶44에서 11<'1¶25<12 ∴ N(125)=11. '36<'43<'49에서 6<'43<7 ∴ N(43)=6 ∴ N(125)-N(43)=11-6=5 . 0164 ① "7Û`-"Ã(-7)Û`=7-7=0 ② -"5Û`+"Ã(-5)Û`=-5+5=0 5. ③ (-'2`)Û`+('2`)Û`=2+2=4 ④ "4Û`-(-'4`)Û`=4-4=0. 0157 N(x)=9를 만족시키는 자연수 x는 9É'§x<10에서 9Û`É('§x )Û`<10Û`이므로 81Éx<100. ③. 따라서 계산 결과가 나머지 넷과 다른 하나는 ③이다.. 따라서 자연수 x는 81, 82, 83, y, 99의 19개이다. . 0158. ⑤ "Ã(-9)Û`-"9Û`=9-9=0. '6-'5 2.449-2.236 ④ = <'5 2 2. ③. ④. 3 ¾¨{ }Û`_"12Û`+2-5Ö;7%; 0165 (주어진 식) = 4 3 = _12+2-5_;5&; 4. =9+2-7=4. 0159 ③ '5-1=1.236<'2 ④ '2+;2!;=1.914이므로 '2<'2+;2!;<'5. ⑤. ③. 0166 a<0이므로 -a>0 ③ -“Ã(-a)Û`=-(-a)=a. 0160 2=’4, 3=’9, 4=’¶16이므로. ⑤ (-‘\¶-a )Û`=(‘¶-a )Û`=-a. ‘3<2<4, '3<3<4, '3<'¶10<4 '1<'3<'4에서 1<'3<2이므로. ③,. ⑤. 0167 a>b, ab<0이므로 a>0, b<0이고, -2a<0. 3<'3+2<4 '3-0.1<'3. ∴ (주어진 식) = a+(-b)-{-(-2a)}-(-b) =a-b-2a+b . 따라서 '3과 4 사이에 있는 수는 2, 3, '¶10, '3+2이다. 2,. 3, '¶1\0, '3+2. 0161 '4<'6<'9에서 2<'6<3이므로. =-a. -a. 0168 a-b<0, b-c<0, c-a>0이므로 (주어진 식) = -(a-b)+{-(b-c)}+(c-a). -3<-'6<-2 ∴ -2<1-'6<-1 '1<'3<'4에서 1<'3<2이므로. =-a+b-b+c+c-a. =-2a+2c. 4<3+'3<5. ②. 따라서 1-'6과 3+'3 사이에 있는 정수는 -1, 0, 1, 2, 3, 4의 6개이다.. 6개. 0169 a+b의 값이 가장 작으려면 a, b의 값이 모두 가장 작아 야 한다. ¾¨. 72a 2Ü`_3Û`_a =¾¨ 가 자연수가 되려면 11 11. a=2_11_(자연수)Û`의 꼴이어야 하므로 가장 작은 a의 값은 2_11=22 본문 p.25~27. 0162. 이때 가장 작은 b의 값은 ¾¨. ① -2는 4의 음의 제곱근이다.. 72a 72_22 =¾¨ ='1¶44=12 11 11 34. 따라서 가장 작은 a+b의 값은 22+12=34. ② '16="4Û`=4이므로 제곱근 '16은 '4=2이다. ③ 음수의 제곱근은 없다.. 0170 x-y=-3-'3<0, x+y=11+'3>0이므로. ④ ‘1¶69=”13Û`=13. “Ã(x-y)Û`-“Ã(x+y)Û`=-(-3-‘3 )-(11+’3 )=-8. ⑤ (‘5 )Û`=5이므로 (‘5 )Û`의 제곱근은 Ñ’5이다. 따라서 옳은 것은 ⑤이다.. ⑤. ① 01. 제곱근과 실수. 11. (12) 0171 ;2&;<'Äx-1É5의 각 변을 제곱하면 . 0177 2<'7<3에서 -3<-'7<-2이므로. 49 53
0이므로 a>0, b>0 또 a0이므로 a, b는 같은 부호이다.. ③,. ⑤. . ∴ (주어진 식)=-(-a)+b-{-(a-b)} . 0175. ① (‘10-1)-2=’10-3=’10-‘9>0. =a+b+a-b . ∴ ‘10-1>2. =2a. ② (2+’5 )-(‘7+’5 )=2-‘7=’4-‘7<0. . ∴ 2+'5<'7+'5. 2a. ③ ('12-3)-('12-'8 )=-3+'8=-'9+'8<0. 단계. ∴ '12-3<'12-'8. 채점요소. 배점. . a, b, a-b의 부호 판별하기. 30 %. ④ (4-'6 )-('20-'6 )=4-'20='16-'20<0. . 근호 없애기. 50 %. ∴ 4-'6<'20-'6. . 식을 간단히 하기. 20 %. ⑤ ('13+2)-5='13-3='13-'9>0 ∴ ‘13+2>5 따라서 옳지 않은 것은 ③, ⑤이다.. ③,. ⑤. 0180 ‘6¶0x=”Ã2Û`_3_5_x가 자연수가 되려면 x=3_5_(자연수)Û`의 꼴이어야 한다.. . 0176 a-b=(‘3+2)-(2+’5 )=’3-‘5<0이므로 a 0이므로 r=’98=7’2. 2 3 0267 (주어진 식) ={- ‘3 }_ ‘5 _ ‘2 =-. 48p+50p=prÛ`, rÛ`=98 . ④. 7’2`cm. 0272 원뿔의 높이를 x`cm라 하면. 6’5 6 =5 ‘5. 따라서 구하는 원의 반지름의 길이는 7’2`cm이다.. 1 _p_(3’5`)Û`_x=45’6p 3 -;5^;. 15px=45’6p ∴ x=3’6 따라서 원뿔의 높이는 3’6`cm이다.. 1 0268 ① 3’¶12Ö(-2’3 )=(3_2’3 )_{- 2’3 }=-3 1 ② 2’¶20Ö’¶10_’2=(2_2’5 )_ _’2=4 ‘¶10 1 ③ ‘¶18_’¶48Ö’1¶08=3’2_4’3_ =2’2 6’3 ‘2 ‘5 ‘3 ‘5 3 1 ④ ¾ Ö Ö = Ö Ö 3 3 4 ‘¶10 2 ‘5 = ⑤. 3’6 x 2. (직사각형의 넓이) =’¶48_’¶27=4’3_3’3=36 3’6 x=36이므로 2 2 24 x=36_ = =4’6 3’6 ‘6 따라서. 5’2 ‘7 ‘¶14 5’2 ‘7 2’3 _{}Ö = _{- }_. ‘3 ‘5 2’3 ‘3 ‘5 ‘14 10’5 10 =- = 5 ‘5 =-2’5. 4’6. 0274 A=(3+2-10)’5=-5’5 B=(4-6+1)’3=-‘3 ∴ A-B =-5’5-(-‘3 ) ④,. =’3-5’5. ⑤. 3’3. ④. ‘3. 2’6. 2’6. 0275 4 + 5 – 2 – 3. 1 0269 3’¶15Ö2’¶18_2’6=3’¶15_ 6’2 _2’6=3’5 ∴ a=3. ‘50 5’2 5’2 1 Ö(-6’3 )_’¶48= _{}_4’3=2 2 3 6’3. 5 ∴ b=- 3 ∴ ab=-5. 1 0273 (삼각형의 넓이) = 2 _x_’54=;2!;_x_3’6 =. ‘3 3’3 3 _’5_ = 2 2 ‘5. 따라서 옳지 않은 것은 ④, ⑤이다.. -5. 0270 ADÓ 를 한 변으로 하는 정사각형의 넓이가 32이므로. 3 ={ -;2!;}’3+{;5@;-;3@;}’6 4 =. ‘3 4’6 15 4. 따라서 a=;4!;, b=ab=-. 4 이므로 15. 1. 15 ‘§a. ②. ‘§a. ADÓ=’¶32=4’2. 0276 3 – 5 = 15 이므로 15 =;5#;에서. CDÓ=’6. 9 81 ‘a= ∴ a= 2 4. CDÓ 를 한 변으로 하는 정사각형의 넓이가 6이므로. 18. 정답과 풀이. 3’6`cm. 2’a. 2’a. ⑤. (19) 0277 1<'3<3이므로 3-'3>0, 1-‘3<0 . 3 2 3 2 0283 '¶18- '8 + '¶50 =3'2- 2'2 + 5'2 . ∴ (주어진 식)=(3-'3 )-{-(1-'3 )}. =3'2. =3-'3+1-'3`. =. =4-2'3 . 3'2 2'2 + 4 10. 49'2 20. ∴ k=;2$0(;. ③. 4-2'3 단계. 채점요소. 배점. . 근호 안의 부호 판단하기. 40 %. . "Ã(3-'3`)Û`, "Ã(1-'3`)Û` 을 근호를 사용하지 않고 나타내기. 30 %. . 주어진 식을 간단히 하기. 30 %. '5. 4'5. 1 0284 b=a-;a!;='5- '5 ='5- 5 = 5 따라서 b는 a의 ;5$;배이다. . ⑤. 6'3. 6'2. 4'2-5'2+4'3 0285 (주어진 식) = 3 6. 0278 2'75+6'8-4'27-'¶128. =4'2-2'3-5'2-'2+4'3. =-2'2+2'3. =10'3+12'2-12'3-8'2 =4'2-2'3. -2'2+2'3. 따라서 a=4, b=-2이므로. a+b=2. ③. 0286 ACÓ=APÓ=BDÓ=BQÓ="Ã1Û`+1Û`='2이므로 p=-2+'2, q=-1-'2. ∴ p-q =(-2+'2 )-(-1-'2 ) . 0279 '1¶75-'¶63+'¶28=5'7-3'7+2'7=4'7 . =-2+'2+1+'2 ②. ∴ k=4. -1+2'2. =-1+2'2 . 0287 PRÓ=PAÓ=QSÓ=QBÓ="Ã1Û`+1Û`='2이므로. 0280 '24+3'a-'1¶50='54에서. 점 A의 좌표는 -1+'2, 점 B의 좌표는 3-'2이다.. 2'6+3'a-5'6=3'6. 따라서 두 점 A, B 사이의 거리는. 3'a=6'6, 'a=2'6='24 ④. ∴ a=24. (3-'2 )-(-1+'2 )=3-'2+1-'2=4-2'2 4-2'2. 0281 '1¶25-'¶75+'1¶08-3'¶20. 0288 ABÓ=APÓ=ADÓ=AQÓ="Ã1Û`+2Û`='5이므로. ='3-'5. ∴ 2p-q =2(2+'5 )-(2-'5 ) . =5'5-5'3+6'3-6'5. p=2+'5, q=2-'5. =a-b. =4+2'5-2+'5 . ③. =2+3'5 '10. 6 0282 '¶45- '2 + '3 -'¶27. 0289 '3 {. =3'5-'5+. ='2-. 6'3 -3'3 3. '2 4'¶15 }+'2(3-'10) 3 '3. 4'¶45 +3'2-'20 3. =3'5-'5+2'3-3'3. ='2-4'5+3'2-2'5. =-'3+2'5. =4'2-6'5. 따라서 a=-1, b=2이므로. 따라서 a=4, b=-6이므로. ab=-2. ②. 2+3'5. `a+b=-2. ① 02. 근호를 포함한 식의 계산. 19. (20) 1 3+8-'3 {4'3} 0290 (주어진 식) = '3. y=. =3+8-12+1=0. ②. '5-'3 ('5-'3 )_'2 '10-'6 = =. 2 '2 '2_'2. 따라서. 0291 3('45-'50)+2'2(4-'10). x+y=. =3(3'5-5'2 )+8'2-2'20 =9'5-15'2+8'2-4'5. x-y=. =-7'2+5'5. 이므로. . '¶10+'6 '¶10-'6 + ='¶10, 2 2. '¶10+'6 '¶10-'6 ='6 2 2. 따라서 x=-7, y=5이므로 x+y=-2. -2. 0292 '3A-'2B ='3('2+'3 )-'2('2-'3 ). . x-y '6 '3 '¶15 = = =. 5 x+y '10 '5. . . ='6+3-2+'6 =2'6+1. 0293 . ②. 2'10-'75 2'10-5'3 = 3'2 3'2 (2'10-5'3 )_'2 = 3'2_'2 4'5-5'6 = 6. 단계. 채점요소. 배점. . x, y의 분모를 유리화하기. 40 %. . x+y, x-y의 값 구하기. 40 %. . x-y 의 값 구하기 x+y. 20 %. 0294 (주어진 식). 6-2'2 '3 6'3-2'6 =5'3+3'63 2'6 =5'3+3'6-2'3+ 3 11'6 =3'3+. 3. =. 따라서 p=3, q=. 0297 '3(5+3'2 )-. 따라서 a=;6$;, b=-;6%;이므로 ;2#;. a-b=;6(;=;2#;. '15-'3` 5'7+2'35 '7 '3 ('15-'3`)_'3 (5'7+2'35 )_'7 = '3_'3 '7_'7 3'5-3 35+14'5 = 3 7. 11 이므로 3. pq=11 . 11. 3'10. 2'2. -2+'2+ -'2 0298 (주어진 식) = 5 '5. ='5-1-5-2'5 =-6-'5. ①. =. 2'10 3'10 -2+ 5 5. '5-'2. ('5-'2`)_'2 '10-2 = 6 3'2_'2 2'6-'15 (2'6-'15)_'6 12-3'10 y= = = 6 '6 '6_'6. 0295 x= 3'2 =. -14+4'10 -7+2'10 = 이므로 3 6 -7+2'10 3(x-y)=3_ =-7+2'¶10 3 따라서 x-y=. . 20. '10-2. '3. 6 0299 '5x+2'3y ='5 { '3 +2'5 }+2'3 {4'5- 3 } 6'5 +10+8'1§5-;3^; '3 6'¶15 = +10+8'1§5-2 3 =. =2'1§5+8'1§5+8 -7+2'10. '5+'3 ('5+'3 )_'2 '10+'6 = =. 2 '2 '2_'2. 정답과 풀이. ='10-2. 0296 x=. '¶15 5. =10'1§5+8 . ⑤. 0300 A=2'3-2'6-'3+2'3=3'3-2'6 . (21) B ='2('6+3'3)-. 0303 A-B =(2-'3`)-(2'3-3) . 3'2-6 '3. =2'3+3'6-'6+2'3. =5-3'3. ='¶25-'¶27<0. =4'3+2'6. ∴ A0. =’7-2. ∴ ‘3+1>2’3-2 ② (4’3+1)-‘7§5=4’3+1-5’3=-1+’3<0. ∴ a>c. ∴ 4’3+1<'7§5 ③ (5'6+'7 )-('7+6'5 ) =5'6-6'5. ='7-'4>0 ⑤. ∴ c0. 1 = _(3’3+4’3+2’3 )_4’2 2. ∴ 3+’5>2’2+’5. ⑤ (2’7+’2 )-(‘7+3’2 ) =’7-2’2 . 1 = _9’3_4’2 2. =’7-‘8<0. =18'6(cmÛ`). 18'6`cmÛ`. ∴ 2'7+'2<'7+3'2 ④. 따라서 옳은 것은 ④이다.. 0306 넓이가 8`cmÛ`, 18`cmÛ`, 32`cmÛ`인 정사각형의 한 변의 길이는 각각 '8`cm, '¶18`cm, '¶32`cm, 즉 2'2`cm, 3'2`cm,. 0302 ① '¶18-(5-'2 ) =3'2-5+'2 =4'2-5. 4'2`cm이므로. ABÓ=2'2`cm, BCÓ=3'2`cm, CDÓ=4'2`cm. ='¶32-'¶25>0. ∴ ADÓ =ABÓ+BCÓ+CDÓ. ∴ ‘¶18>5-‘2. 9’2`cm. =2’2+3’2+4’2=9’2(cm). ② (3-‘3 )-(4-2’3 )=-1+’3>0. 0307 직육면체의 높이를 x라 하면. ∴ 3-‘3>4-2’3 ③ (5’2-2’3 )-(3’2+’3 ) =2’2-3’3. ‘1§2_’3_x=18’3. =’8-‘¶27<0. . ∴ 5'2-2'3<3'2+'3. 2'3_'3_x=18'3, 6x=18'3. ④ (3'3-4'2 )-(-'¶12+'8 ) =3'3-4'2+2'3-2'2. ∴ x=3'3. =5'3-6'2 . . `='¶75-'¶72>0. 따라서 직육면체의 모든 모서리의 길이의 합은. ∴ 3’3-4’2>-‘¶12+’8. 4(‘1§2+’3+3’3 ) =4(2’3+’3+3’3 ) . ⑤ (2’7-‘3 )-(3’3+’7 ) =’7-4’3 . . =4_6’3 . =’7-‘¶48<0. =24'3. ∴ 2'7-'3<3'3+'7 따라서 옳지 않은 것은 ④이다.. ④. 24'3 02. 근호를 포함한 식의 계산. 21. (22) 단계. 채점요소. 배점. . 직육면체의 부피를 이용하여 높이에 대한 방정식 세우기. 20 %. . 직육면체의 높이 구하기. 40 %. . 모든 모서리의 길이의 합 구하기. 40 %. '80-2'5 0308 (상자의 밑면의 가로의 길이) =. =4'5-2'5. 본문 p.41. (3-4'¶12 )_'3 -6k'3-6 '3_'3 3'3-24 = -6k'3-6 3. ='3-8-6k'3-6 . 0313 (주어진 식) =. =-14+(1-6k)'3. =2'5(cm). (상자의 밑면의 세로의 길이) = '1¶25-2'5. 이 값이 유리수가 되려면. 1-6k=0 ∴ k=;6!;. =5'5-2'5 =3'5(cm). (상자의 높이)='5`cm. ③. 3+a'3-2'3(2-'3 ) 0314 (주어진 식) =. ∴ (상자의 부피)=2'5_3'5_'5=30'5(cmÜ`). =3+a'3-4'3+6 . 30'5`cmÜ`. =9+(a-4)'3 이 값이 유리수가 되려면. 0309 ① '5¶00='Ä5_100=10'5=10_2.236=22.36 ② '¶0.5=®É;1°0¼0;=. a-4=0 ∴ a=4. '5§0 7.071 = =0.7071 10 10. ③ '5¶000='Ä50_100=10'5§0=10_7.071=70.71 ④ 'Ä0.05=®É;10%0;=. =3a-6+(a+1)'6. '5§0 7.071 = =0.07071 100 100. 이 값이 유리수가 되려면 a+1=0 ∴ a=-1. '¶6.8 2.608 6.8 ① '0Ä.00068=®É = = =0.02608 10000 100 100. ② 'Ä0.068=®É. ③. ③. 따라서 옳은 것은 ③이다.. 0310. a'6+3a-6+'6 0315 (주어진 식) =. '5 2.236 = =0.2236 10 10. ⑤ 'Ä0.005=®É;10°0¼00;=. 4. '¶6.8 2.608 6.8 = = =0.2608 100 10 10. 0316 P =8'6+5a-5'6+3a'6+13. =5a+13+(3a+3)'6 P가 유리수가 되려면 3a+3=0 ∴ a=-1 a=-1, P=8. ∴ P=5_(-1)+13=8. ③ '6¶80='Ä6.8_100=10'¶6.8=10_2.608=26.08. ④ ' 6¶800='Ä68_100=10'¶68이므로 '¶68의 값이 주어져야 한 다.. 0317 2<'7<3에서 5<3+'7<6이므로 a=5 2'6='¶24에서 4<'¶24<5이므로 b=2'6-4. ⑤ 'Ä68000 ='Ä6.8_10000=100'¶6.8. ①. ∴ a+b=2'6+1. =100_2.608=260.8. ④. 따라서 그 값을 구할 수 없는 것은 ④이다.. 0311 25.65=10_2.565=10'¶6.58='Ä6.58_100='¶658 658. ∴ a=658. 0312. 1.732 =0.3464 5 4'2 '2 1 ⑵ 'Ä0.32+®É;5Á0; =®É;1£0ª0;+ = + 10 10 5'2 '2 1.414 = = =0.707 2 2 =. 22. 정답과 풀이. 4<6-'2<5 따라서 a=4, b=(6-'2 )-4=2-'2이므로 a-2b =4-2(2-'2 )=4-4+2'2 . . =2'2. 2'3 '3 ⑴ 'Ä0.12 =®É;1Á0ª0;= = 10 5. ⑴. 0318 1<'2<2에서 -2<-'2<-1이므로. 0.3464 ⑵ 0.707. ③. 0319 1<'3<2에서 -2<-'3<-1이므로 1<3-'3<2 ∴ a=1 . 3<'1§0<4에서 4<'1§0+1<5이므로 b=('1§0+1)-4='1§0-3 . (23) ∴ '1§0a-b='1§0_1-('1§0-3)=3 . ∴ '¶ab=¾¨;5(;_. 20 ='4=2 9. ②. 3 단계. 채점요소. 배점. . a의 값 구하기. 40 %. . b의 값 구하기. 40 %. . '1§0a-b의 값 구하기. 20 %. 0325 (직사각형의 넓이) =4'2_'¶27=4'2_3'3` =12'6. '3 2 (삼각형의 넓이)=;2!;_ _x= x 3 '3 직사각형의 넓이가 삼각형의 넓이의 3배이므로 12'6=. 0320 3<'11<4이므로 이때 16<'2¶75<17이므로 '2¶75의 소수 부분은. '2¶75-16=5'11-16=5(a+3)-16=5a-1 . '3 x_3, '3x=12'6` 3. 12'2. ∴ x=12'2. a='11-3 ∴ '11=a+3 ②. 0326 ㄱ. '9+'¶25=3+5=8 ㄷ. 4'3-2'3=(4-2)'3=2'3 ②. 따라서 옳은 것은 ㄱ, ㄷ이다.. 0327 11='1¶21이므로 11-'3>0 4=’¶16이므로 ‘¶12-4<0 본문 p.42~44. ∴ (주어진 식) = (11-'3 )-{-('12-4)} . 0321 ① "Ã2Ý`_Ã3Û`_11=2Û`_3_'1§1=12'1§1 ② '1§2_5'6=2'3_5'6=10'1§8=30'2. '5§4=3'6이므로 (7-a)'6=3'6 ④. ②. 따라서 7-a=3이므로 a=4 7 0329 (주어진 식) = -2'3+8'3-3'3 . 7_'3 7 = 3'3 3'3_'3 7'3 =. 9. 10. 28 'Ä0.28+'Ä7000 =®É +'7Ä0_100 100 '¶28 = +10'¶70 10 2'7 = +10'¶70 10 '7 = +10'¶70 5 1 = a+10b 5. ⑤. =(7-a)'6. 0322 3'5="Ã3Û`_5='¶45이므로. 0323. 0328 '1¶50+'2§4-a'6 =5'6+2'6-a'6 . ⑤ 2'1§8Ö'6_'2=6'2_. 15+3a=45, 3a=30 ∴ a=10. =11-'3+2'3-4 =7+'3. 2'5 ③ 2'5Ö(-'2 )==-'1§0 '2 8 2'2 2'6 ④ ®;5#;`®É;;¢9¼;;=®É;5#;_;;¢9¼;;=® = = 3 3 '3. 1 12 _'2= =2'6 '6 '6 따라서 옳지 않은 것은 ④이다.. =11-'3+'12-4. =. ③. '3. 0330 3(3-2'6)- 3 (6'3-9'2) =9-6'6-6+3'6=3-3'6 따라서 a=3, b=-3이므로 a+b=0. 0. ④. (2'3-'2`)_'2 (3'2+'3`)_'3 '2_'2 '3_'3 2'6-2 3'6+3 =. 2 3. 0331 (주어진 식) = 9'3 9'3_'5 9'1§5 = = ∴ a=;5(; 0324 5 '5. '5_'5 20_'3 20'3 20 20 20 = = = ∴ b= 9 9 '2§7 3'3 3'3_'3. ='6-1-'6-1. =-2. ② 02. 근호를 포함한 식의 계산. 23. (24) 0332 A-B =(2'3-3)-'3 ='3-3. 0337 a+b의 값이 가장 작으려면 a, b의 값이 모두 가장 작아. 야 한다.. 'Ä150a="Ã2_3_5Û`_a=b'3에서 a=2_(자연수)Û`의 꼴이어. ='3-'9<0 ∴ A
0. 따라서 a+b의 값 중 가장 작은 값은 2+10=12. ∴ A>C. 12. C0이므로 A=2, B=9, C=-12 . xÛ`항은 (-3x)_ax=-3axÛ`이므로 xÛ`의 계수는 -3a. . xy항은. ∴ A-B-C=2-9-(-12)=5 . (-3x)_5y+2y_ax=-15xy+2axy=(-15+2a)xy. . 이므로 xy의 계수는 -15+2a. . 이때 xÛ`의 계수와 xy의 계수가 같으므로 -3a=-15+2a, -5a=-15 ∴ a=3. 단계 . ⑤. 0371 주어진 식의 전개식에서. 채점요소. 5. 배점. . 주어진 식 전개하기. 40 %. . A, B, C의 값 구하기. 40 %. . A-B-C의 값 구하기. 20 %. xy항은 x_ay+(-3y)_x=axy-3xy=(a-3)xy이므로 xy의 계수는 a-3 y항은 (-3y)_b+(-2)_ay=-3by-2ay=(-3b-2a)y 이므로 y의 계수는 -3b-2a. B=;3@;. a-3=-2 ∴ a=1 -3b-2a=-2 ∴ b=0 0. 0372 (5x-2y)Û`=25xÛ`-20xy+4yÛ`이므로 . . 1 = xÛ`-16yÛ` 4. ③. 0373 {x+;3!;}Û`=xÛ`+;3@;x+;9!;=xÛ`-ax+;9!; ∴ a=-;3@;. 따라서 x의 계수는 6AB=6_4_;3@;=16. 16. 1 0380 {- 2 x-4y}{-;2!;x+4y}={-;2!;x}Û`-(4y)Û`. a=25, b=-20, c=4 ∴ a+b-c=25+(-20)-4=1 . xÛ`의 계수가 16이므로 AÛ`=16이고 A는 양수이므로 A=4 상수항이 4이므로 9BÛ`=4, 즉 BÛ`=;9$;이고 B는 양수이므로. 이때 xy의 계수와 y의 계수가 모두 -2이므로. ∴ ab=0. 0379 (Ax+3B)Û`=AÛ`xÛ`+6ABx+9BÛ` . ③. 0381 ② (-3+x)(-3-x) =(-3)Û`-xÛ` . =9-xÛ`. ③. ②. 0382 (2x+3y)(2x-3y)-3(-x+y)(-x-y). 0374 ① (x+3)Û`=xÛ`+6x+9. =4xÛ`-9yÛ`-3(xÛ`-yÛ`). ② (3x-1)Û`=9xÛ`-6x+1. =4xÛ`-9yÛ`-3xÛ`+3yÛ`. ③ {;2!;x+3}Û`=;4!;xÛ`+3x+9. =xÛ`-6yÛ` 이므로 A=1, B=-6 . ④ (-2x-3)Û`=(2x+3)Û`=4xÛ`+12x+9 따라서 옳은 것은 ⑤이다.. ⑤. ∴ A+B=-5. 0375 (-a+2b)Û`={-(a-2b)}Û`=(a-2b)Û` `. ④. 0383 (1-a)(1+a)(1+aÛ`)(1+aÝ`). . -5. =(1-aÛ`)(1+aÛ`)(1+aÝ`). 0376 (3x-ay)Û`=9xÛ`-6axy+aÛ`yÛ`에서. =(1-aÝ`)(1+aÝ`). xy의 계수가 -30이므로 -6a=-30 ∴ a=5. =1-a¡`. 따라서 yÛ`의 계수는 aÛ`=25. . ⑤. 8. ∴ =8 03. 다항식의 곱셈. 27. (28) 0384 (x+a)(x-7)=xÛ`+(a-7)x-7a=xÛ`+bx-14. ∴ A+B+C=5+(-5)+(-22)=-22. 따라서 a-7=b, -7a=-14이므로. . a=2, b=-5. -22. ∴ a+b=-3. -3. 0385 {x-;3!;}(x+a)=xÛ`+{-;3!;+a}x-;3!;a에서. 단계. 채점요소. 배점. . 주어진 식 전개하기. 40 %. . A, B, C의 값 구하기. 40 %. . A+B+C의 값 구하기. 20 %. x의 계수와 상수항이 같으므로 -;3!;+a=-;3!;a, ;3$;a=;3!; ∴ a=;4!;. . ④. 0391 (4x+a)(5x+2)=20xÛ`+(8+5a)x+2a이므로 8+5a=23, 2a=6 ∴ a=3 바르게 계산한 식은 (4x+3)(2x+5)=8xÛ`+26x+15. 0386 (x-2){x+;2!;}=xÛ`-;2#;x-1 ∴ a=-;2#; . 따라서 x의 계수는 26, 상수항은 15이므로 구하는 합은 . 26+15=41. . 41. . 0392 ② (-x-5)Û`=xÛ`+10x+25. . ②. . ⑤. . ③. (x-3)(x+2)=xÛ`-x-6 ∴ b=-6 ∴ ab=9 단계. 채점요소. 9. 배점. . a의 값 구하기. 40 %. . b의 값 구하기. 40 %. . ab의 값 구하기. 20 %. 0393 ① (-x+3)Û`=xÛ`-6x+9 ⇨ x의 계수 : -6 ② (4x-1)Û`=16xÛ`-8x+1 ⇨ x의 계수 : -8 ③ (-x+4)(-x-6)=xÛ`+2x-24 ⇨ x의 계수 : 2 ④ (4-3x)(x+2)=-3xÛ`-2x+8 ⇨ x의 계수 : -2 ⑤ (2x-5)(3x+1)=6xÛ`-13x-5 ⇨ x의 계수 : -13 따라서 x의 계수가 가장 작은 것은 ⑤이다.. xÛ`-2x-15-3(xÛ`-5x-6) 0387 (주어진 식) =. =xÛ`-2x-15-3xÛ`+15x+18. 0394 P+Q=(a+b)(a-b), P+R=aÛ`-bÛ`이고 P+Q=P+R이므로. =-2xÛ`+13x+3. (a+b)(a-b)=aÛ`-bÛ` . -2xÛ`+13x+3. 0395 색칠한 직사각형의 가로의 길이는 5x+2, 세로의 길이. 0388 (3x+a)(4x-5) =12xÛ`+(4a-15)x-5a. =12xÛ`+bx-10. 는 6x-3이므로 구하는 넓이는 (5x+2)(6x-3)=30xÛ`-3x-6. . 30xÛ`-3x-6. 따라서 4a-15=b, -5a=-10이므로 a=2, b=-7 9. ∴ a-b=9. 0396 오른쪽 그림과 같이 떨어진 부. =30xÛ`-13x-3-24xÛ`+4x+4 =6xÛ`-9x+1. (3x-1)(2x-1)=6xÛ`-5x+1. a-b+c=6-(-5)+1=12. . 12. 이므로 이 직사각형의 넓이는 (a-3)(a+4)=aÛ`+a-12. =15xÛ`+Cx-5. . 따라서 B=-5이고 3A=15에서 A=5 C=AB+3=5_(-5)+3=-22. 이때 처음 정사각형의 넓이는 aÛ`이고 직사각형의 넓이는 처음 정 . 정답과 풀이. 1. 0397 직사각형의 가로의 길이는 a-3, 세로의 길이는 a+4 . 28. 2x. 따라서 a=6, b=-5, c=1이므로 ③. 0390 (Ax+1)(3x+B)=3AxÛ`+(AB+3)x+B. 1. 분을 이동하여 붙이면 길을 제외한 땅의 넓이는. 0389 (주어진 식) =30xÛ`-13x-3-4(6xÛ`-x-1) . 3x. 사각형의 넓이보다 5만큼 크므로.
(29) aÛ`+a-12=aÛ`+5. ⑶ 2x+y=A로 놓으면 . (2x+y-1)Û` =(A-1)Û`. =AÛ`-2A+1 . ∴ a=17 단계. 채점요소. . =(2x+y)Û`-2(2x+y)+1 . 17. =4xÛ`+4xy+yÛ`-4x-2y+1 . 배점. ⑴ xÛ`-2xz+zÛ`-yÛ`. . 직사각형의 넓이 구하기. 40 %. ⑵ xÛ`+2xy+yÛ`-2x-2y. . 조건에 맞는 식 세우기. 40 %. ⑶ 4xÛ`+4xy+yÛ`-4x-2y+1. . a의 값 구하기. 20 %. 0398 오른쪽 그림과 같이 떨어진 부분. 0403 x-3y=A로 놓으면. 5a 1. 을 이동하여 붙이면 길을 제외한 땅의 넓. (x-3y+1)Û`=(A+1)Û`=AÛ`+2A+1 =(x-3y)Û`+2(x-3y)+1. 4a. 이는. =xÛ`-6xy+9yÛ`+ 2x-6y+1. (5a-1)(4a-1)=20aÛ`-9a+1. . 1 . 2x-6y+1. 20aÛ`-9a+1. 0399 새로운 직사각형의 가로의 길이는 a-b, 세로의 길이는 a+b이므로 구하는 넓이는 (a-b)(a+b)=aÛ`-bÛ` . . 0404 x+2y=A로 놓으면 (x+2y-3)Û` =(A-3)Û`. =AÛ`-6A+9 . aÛ`-bÛ`. =(x+2y)Û`-6(x+2y)+9. =xÛ`+4xy+4yÛ`-6x-12y+9. 0400 정사각형 EFCD의 한 변의 길이가 a+2이므로 정사각. . 형 AGHE의 한 변의 길이는 따라서 xy의 계수는 4, 상수항은 9이므로 A=4, B=9. 3a-1-(a+2)=2a-3. . ∴ (사각형 GBFH의 넓이) = (직사각형 ABCD의 넓이)-(정사각형 AGHE의 넓이) . ∴ A-B=-5 . -(정사각형 EFCD의 넓이). -5. =(3a-1)(a+2)-(2a-3)Û`-(a+2)Û` =3aÛ`+5a-2-4aÛ`+12a-9-aÛ`-4a-4 =-2aÛ`+13a-15. . 단계. -2aÛ`+13a-15. 0401 x-2=A로 놓으면 (x+3y-2)(x-3y-2) =(A+3y)(A-3y) =AÛ`-9yÛ`. =xÛ`-4x-9yÛ`+4. . 주어진 식 전개하기. 60 %. . A, B의 값 구하기. 30 %. . A-B의 값 구하기. 10 %. ` ③. 0405 (주어진 식) ={(x+1)(x-3)}{(x+2)(x-4)} xÛ`-2x=A로 놓으면. (x+y-z)(x-y-z) =(A+y)(A-y) =AÛ`-yÛ`. =(x-z)Û`-yÛ` =xÛ`-2xz+zÛ`-yÛ` ⑵ x+y=A로 놓으면 (x+y)(x+y-2) =A(A-2) =AÛ`-2A. =(xÛ`-2x-3)(xÛ`-2x-8) (A-3)(A-8) =AÛ`-11A+24. 0402 ⑴ x-z=A로 놓으면. 배점. =(x-2)Û`-9yÛ. 채점요소. =(xÛ`-2x)Û`-11(xÛ`-2x)+24. =xÝ`-4xÜ`+4xÛ`-11xÛ`+22x+24. =xÝ`-4xÜ`-7xÛ`+22x+24 따라서 xÜ`의 계수는 -4, x의 계수는 22이므로 a=-4, b=22 18. ∴ a+b=18. =(x+y)Û`-2(x+y) =xÛ`+2xy+yÛ`-2x-2y. {x(x-2)}{(x+1)(x-3)} 0406 (주어진 식) =. =(xÛ`-2x)(xÛ`-2x-3) 03. 다항식의 곱셈. 29.
(30) 0413 (-3’7+2)Û` =(-3’7 )Û`+2_(-3’7 )_2+2Û`. xÛ`-2x=A로 놓으면 A(A-3) =AÛ`-3A . =(xÛ`-2x)Û`-3(xÛ`-2x). =63-12’7+4 . =67-12’7. ③. =xÝ`-4xÜ`+4xÛ`-3xÛ`+6x =xÝ`-4xÜ`+xÛ`+6x xÝ`-4xÜ`+xÛ`+6x. {(x-6)(x+5)}{(x-2)(x+1)} 0407 (주어진 식) =. =(xÛ`-x-30)(xÛ`-x-2). 0414 (5’3+3)(2’3-1) =30+(-5+6)’3-3. =27+’3 따라서 a=27, b=1이므로 a-b=26. ④. xÛ`-x=A로 놓으면 (A-30)(A-2) =AÛ`-32A+60. 0415 M =(‘3+2’2 )Û`. =(xÛ`-x)Û`-32(xÛ`-x)+60. =(‘3 )Û`+2_’3_2’2+(2’2 )Û` . =xÝ`-2xÜ`+xÛ`-32xÛ`+32x+60. =3+4’6+8=11+4’6. =xÝ`-2xÜ`-31xÛ`+32x+60. . 따라서 a=-2, b=-31, c=32, d=60이므로. N =(2’6-1)(4’6+3). a+b+c+d=-2+(-31)+32+60=59. 59. =48+(6-4)’6-3 . =45+2’6. 0408 xÛ`-4x-1=0에서 xÛ`-4x=1. . ∴ (주어진 식) = {(x-5)(x+1)}{(x-3)(x-1)} =(xÛ`-4x-5)(xÛ`-4x+3). ∴ M-N=-34+2’6. . =(1-5)(1+3)=-16. -16. -34+2’6 단계. 0409 ⑤ 504_507=(500+4)(500+7) ⑤. ⇨ (x+a)(x+b). 채점요소. 배점. . M의 값 구하기. 40 %. . N의 값 구하기. 40 %. . M-N의 값 구하기. 20 %. 0410 ① 97Û`=(100-3)Û` ⇨ (a-b)Û` ② 102Û`=(100+2)Û` ⇨ (a+b)Û`. 0416 (6+4’2 )(6-4’2 )(5+2’6 )(5-2’6 ). ③ 103_104=(100+3)(100+4) ⇨ (x+a)(x+b). ={(6+4’2 )(6-4’2 )}{(5+2’6 )(5-2’6 )}. ④ 8.1_7.9=(8+0.1)(8-0.1) ⇨ (a+b)(a-b). ={6Û`-(4’2 )Û`}{5Û`-(2’6 )Û`} `. ⑤ 99Û`=(100-1)Û` ⇨ (a-b)Û` 따라서 주어진 곱셈 공식을 이용하면 가장 편리한 것은 ④이다. ④. 0411 ① 95Û`=(100-5)Û` ⇨ (a-b)Û`. =(36-32)(25-24) =4. 4. 0417 . ② 1004Û`=(1000+4)Û` ⇨ (a+b)Û` ③ 55_45=(50+5)(50-5) ⇨ (a+b)(a-b). ‘2+5 (‘2+5)(3+2’2 ) = . 3-2’2 (3-2’2 )(3+2’2 ) =3’2+4+15+10’2 . =19+13’2. ④ 102_98=(100+2)(100-2) ⇨ (a+b)(a-b) ⑤ 101_108=(100+1)(100+8) ⇨ (x+a)(x+b). 따라서 a=19, b=13이므로. 따라서 주어진 곱셈 공식을 이용하면 가장 편리한 것은 ⑤이다.. a+b=32. ⑤. ⑤. 0412. 7-4’3. 2018_2021+2 (x-1)(x+2)+2 xÛ`+x = = 2019 x x =x+1=2019+1=2020. 30. 1 1 0418 x = 7+4’3 = (7+4’3 )(7-4’3 ) . 2019=x라 하면. 정답과 풀이. =7-4’3. 2020. ∴ x+. 1 =(7+4’3 )+(7-4’3 )=14 x. ③.
(31) 0419 . ‘6-‘3 ‘6+’3 ‘6+’3 ‘6-‘3. ⑵ xÛ`+. =. (‘6-‘3)Û` (‘6+’3)Û`. (‘6+’3 )(‘6-‘3 ) (‘6-‘3 )(‘6+’3 ). =. 6-6’2+3 6+6’2+3 9-6’2 9+6’2 = 6-3 3 6-3 3. f(x). . ①. 18={x+;[!;}Û`-2 ∴ {x+;[!;}Û`=20 그런데 x>0이므로 x+;[!;>0. 1 ‘Äx+1+’§x. ‘Äx+1-‘§x = (‘Äx+1+’§x )(‘Äx+1-‘§x ) ‘Äx+1-‘§x = x+1-x. ∴ x+;[!;=’20=2’5. . 1 0428 {x- x }Û` ={x+;[!;}Û`-4 . ⑤. =(2’7 )Û`-4=24. =’Äx+1-‘§x ∴. ⑴ 18 ⑵ 4. 1 0427 xÛ`+ xÛ` ={x+;[!;}Û`-2이므로. =3-2’2-(3+2’2)=-4’2 1 = 0420 . 1 ={x+;[!;}Û`-2=(‘6 )Û`-2=4 xÛ`. 그런데 0
So you have finished reading the 개념 원리 rpm 중 3 1 답지 topic article, if you find this article useful, please share it. Thank you very much. See more: 개념원리 rpm 3-2 답지, 개념원리 rpm 3-1 답지 2022, rpm 실력테스트 답지, 개념원리 rpm 3-1 답지 2021, 개념원리 rpm 3-1 pdf, 개념원리 3-1 답지, 개념원리 rpm 1-1 답지, rpm 3-2 답지 2021