You are looking for information, articles, knowledge about the topic nail salons open on sunday near me qml listview on Google, you do not find the information you need! Here are the best content compiled and compiled by the https://chewathai27.com/to team, along with other related topics such as: qml listview ListView QML, Mousearea qml, qml listview clear, Flickable QML, ScrollBar qml, Itemdelegate qml, qml listview delegate index, qml listview header example
ListView QML Type | Qt Quick 6.3.1
- Article author: doc.qt.io
- Reviews from users: 4664 Ratings
- Top rated: 3.4
- Lowest rated: 1
- Summary of article content: Articles about ListView QML Type | Qt Quick 6.3.1 A ListView displays data from models created from built-in QML types like ListModel and XmlListModel, or custom model es defined in C++ that inherit … …
- Most searched keywords: Whether you are looking for ListView QML Type | Qt Quick 6.3.1 A ListView displays data from models created from built-in QML types like ListModel and XmlListModel, or custom model es defined in C++ that inherit …
- Table of Contents:
Properties
Attached Properties
Attached Signals
Methods
Detailed Description
Example Usage
ListView Layouts
Flickable Direction
Stacking Order in ListView
Reusing items
Property Documentation
Attached Property Documentation
Attached Signal Documentation
Method Documentation
Qt 4.8: QML ListView Element
- Article author: het.as.utexas.edu
- Reviews from users: 32143 Ratings
- Top rated: 4.7
- Lowest rated: 1
- Summary of article content: Articles about Qt 4.8: QML ListView Element A ListView displays data from models created from built-in QML elements like ListModel and XmlListModel, or custom model es defined in C++ that inherit … …
- Most searched keywords: Whether you are looking for Qt 4.8: QML ListView Element A ListView displays data from models created from built-in QML elements like ListModel and XmlListModel, or custom model es defined in C++ that inherit …
- Table of Contents:
API Lookup
Qt Topics
Examples
Properties
Attached Properties
Attached Signal Handlers
Methods
Detailed Description
Example Usage
Property Documentation
Attached Property Documentation
Attached Signal Handler Documentation
Method Documentation
qt – QML Listview space items to fill width – Stack Overflow
- Article author: stackoverflow.com
- Reviews from users: 49534 Ratings
- Top rated: 4.2
- Lowest rated: 1
- Summary of article content: Articles about qt – QML Listview space items to fill width – Stack Overflow You can accomplish what you want with a ListView , you just need to adjust the spacing dynamically based on how many delegates you have. …
- Most searched keywords: Whether you are looking for qt – QML Listview space items to fill width – Stack Overflow You can accomplish what you want with a ListView , you just need to adjust the spacing dynamically based on how many delegates you have.
- Table of Contents:
1 Answer
1
Your Answer
Not the answer you’re looking for Browse other questions tagged qt listview qml spacing or ask your own question
QML component showing simple multi-select capabilities in a ListView · GitHub
- Article author: gist.github.com
- Reviews from users: 24424 Ratings
- Top rated: 3.1
- Lowest rated: 1
- Summary of article content: Articles about QML component showing simple multi-select capabilities in a ListView · GitHub if (selected) {. friendsListMultiselectComponent.selectItem(item);. } } // this is a workaround to make the signals visible inse the listview item scope. …
- Most searched keywords: Whether you are looking for QML component showing simple multi-select capabilities in a ListView · GitHub if (selected) {. friendsListMultiselectComponent.selectItem(item);. } } // this is a workaround to make the signals visible inse the listview item scope. QML component showing simple multi-select capabilities in a ListView – FriendsListComponent.qml
- Table of Contents:
7. Model-View-Delegate — Qt5 Cadaques Book vmaster
- Article author: qmlbook.github.io
- Reviews from users: 29701 Ratings
- Top rated: 3.8
- Lowest rated: 1
- Summary of article content: Articles about 7. Model-View-Delegate — Qt5 Cadaques Book vmaster In QML, the model and view are joined by the delegate. The responsibilies are dived as … For this, Qt Quick proves the ListView and GrView elements. …
- Most searched keywords: Whether you are looking for 7. Model-View-Delegate — Qt5 Cadaques Book vmaster In QML, the model and view are joined by the delegate. The responsibilies are dived as … For this, Qt Quick proves the ListView and GrView elements.
- Table of Contents:
71 Concept¶
72 Basic Models¶
73 Dynamic Views¶
74 Delegate¶
75 Advanced Techniques¶
76 Summary¶
ListView QML Type | Qt Quick 5.7
- Article author: stuff.mit.edu
- Reviews from users: 23059 Ratings
- Top rated: 3.3
- Lowest rated: 1
- Summary of article content: Articles about ListView QML Type | Qt Quick 5.7 A ListView displays data from models created from built-in QML types like ListModel and XmlListModel, or custom model es defined in C++ that inherit … …
- Most searched keywords: Whether you are looking for ListView QML Type | Qt Quick 5.7 A ListView displays data from models created from built-in QML types like ListModel and XmlListModel, or custom model es defined in C++ that inherit …
- Table of Contents:
Properties
Attached Properties
Attached Signals
Methods
Detailed Description
Example Usage
ListView Layouts
Property Documentation
Attached Property Documentation
Attached Signal Documentation
Method Documentation
Use of ListView – qml
- Article author: programmer.ink
- Reviews from users: 28355 Ratings
- Top rated: 4.5
- Lowest rated: 1
- Summary of article content: Articles about Use of ListView – qml Use of ListView – qml. Posted by Jeremias on Sat, 18 Dec 2021 23:45:12 +0100. preface. I’ve been writing qml for a while. Now I’ve forgotten almost half a … …
- Most searched keywords: Whether you are looking for Use of ListView – qml Use of ListView – qml. Posted by Jeremias on Sat, 18 Dec 2021 23:45:12 +0100. preface. I’ve been writing qml for a while. Now I’ve forgotten almost half a … qmlpreface I’ve been writing qml for a while. Now I’ve forgotten almost half a year. If I didn’t look at the previous code and recall something, I’m afraid I thought it was just a fantasy. Recently, I finally have some time to think about things, or to choose what language to write and what to wriUTF-8…
- Table of Contents:
Some basic settings
model
delegate agent
ListView nesting
How to scroll QML list view to particular set of items – CodeProject
- Article author: www.codeproject.com
- Reviews from users: 23251 Ratings
- Top rated: 4.9
- Lowest rated: 1
- Summary of article content: Articles about How to scroll QML list view to particular set of items – CodeProject Hi, I have a Qml list view with Left, Right Scrolling Buttons and that can display 7 items at a time. The ListView orientation is Horizontal … …
- Most searched keywords: Whether you are looking for How to scroll QML list view to particular set of items – CodeProject Hi, I have a Qml list view with Left, Right Scrolling Buttons and that can display 7 items at a time. The ListView orientation is Horizontal … Free source code and tutorials for Software developers and Architects.; Updated: 2 May 2022Free source code, tutorials
- Table of Contents:
Add your solution here
Preview 0
See more articles in the same category here: Chewathai27.com/to/blog.
ListView QML Type
ListView QML Type
Provides a list view of items provided by a model. More…
Import Statement: import QtQuick Inherits: Flickable
Properties
Attached Properties
Attached Signals
Methods
Detailed Description
A ListView displays data from models created from built-in QML types like ListModel and XmlListModel, or custom model classes defined in C++ that inherit from QAbstractItemModel or QAbstractListModel.
A ListView has a model, which defines the data to be displayed, and a delegate, which defines how the data should be displayed. Items in a ListView are laid out horizontally or vertically. List views are inherently flickable because ListView inherits from Flickable.
Example Usage
The following example shows the definition of a simple list model defined in a file called ContactModel.qml :
import QtQuick 2.0 ListModel ListElement name : “Bill Smith” number : “555 3264” } ListElement name : “John Brown” number : “555 8426” } ListElement name : “Sam Wise” number : “555 0473” } }
Another component can display this model data in a ListView, like this:
import QtQuick 2.0 ListView width : 180 ; height : 200 model : ContactModel {} delegate : Text { text : name + “: ” + number } }
Here, the ListView creates a ContactModel component for its model, and a Text item for its delegate. The view will create a new Text component for each item in the model. Notice the delegate is able to access the model’s name and number data directly.
An improved list view is shown below. The delegate is visually improved and is moved into a separate contactDelegate component.
Rectangle width : 180 ; height : 200 Component { id : contactDelegate Item width : 180 ; height : 40 Column Text text : ‘Name: ‘ + name } Text text : ‘Number: ‘ + number } } } } ListView anchors .fill: parent model : ContactModel {} delegate : contactDelegate highlight : Rectangle { color : “lightsteelblue” ; radius : 5 } focus : true } }
The currently selected item is highlighted with a blue Rectangle using the highlight property, and focus is set to true to enable keyboard navigation for the list view. The list view itself is a focus scope (see Keyboard Focus in Qt Quick for more details).
Delegates are instantiated as needed and may be destroyed at any time. As such, state should never be stored in a delegate. Delegates are usually parented to ListView’s contentItem, but typically depending on whether it’s visible in the view or not, the parent can change, and sometimes be null . Because of that, binding to the parent’s properties from within the delegate is not recommended. If you want the delegate to fill out the width of the ListView, consider using one of the following approaches instead:
ListView { id: listView delegate: Item { width: parent . width width: listView . width width: ListView . view . width } }
ListView attaches a number of properties to the root item of the delegate, for example ListView.isCurrentItem . In the following example, the root delegate item can access this attached property directly as ListView.isCurrentItem , while the child contactInfo object must refer to this property as wrapper.ListView.isCurrentItem .
ListView width : 180 ; height : 200 Component { id : contactsDelegate Rectangle id : wrapper width : 180 height : contactInfo . height color : ListView . isCurrentItem ? “black” : “red” Text id : contactInfo text : name + “: ” + number color : wrapper . ListView . isCurrentItem ? “red” : “black” } } } model : ContactModel {} delegate : contactsDelegate focus : true }
Note: Views do not enable clip automatically. If the view is not clipped by another item or the screen, it will be necessary to set clip: true in order to have the out of view items clipped nicely.
ListView Layouts
The layout of the items in a ListView can be controlled by these properties:
orientation – controls whether items flow horizontally or vertically. This value can be either Qt.Horizontal or Qt.Vertical.
layoutDirection – controls the horizontal layout direction for a horizontally-oriented view: that is, whether items are laid out from the left side of the view to the right, or vice-versa. This value can be either Qt.LeftToRight or Qt.RightToLeft.
verticalLayoutDirection – controls the vertical layout direction for a vertically-oriented view: that is, whether items are laid out from the top of the view down towards the bottom of the view, or vice-versa. This value can be either ListView.TopToBottom or ListView.BottomToTop.
By default, a ListView has a vertical orientation, and items are laid out from top to bottom. The table below shows the different layouts that a ListView can have, depending on the values of the properties listed above.
ListViews with Qt.Vertical orientation Top to bottom Bottom to top ListViews with Qt.Horizontal orientation Left to right Right to left
Flickable Direction
By default, a vertical ListView sets flickableDirection to Flickable.Vertical, and a horizontal ListView sets it to Flickable.Horizontal. Furthermore, a vertical ListView only calculates (estimates) the contentHeight, and a horizontal ListView only calculates the contentWidth. The other dimension is set to -1.
Since Qt 5.9 (Qt Quick 2.9), it is possible to make a ListView that can be flicked to both directions. In order to do this, the flickableDirection can be set to Flickable.AutoFlickDirection or Flickable.AutoFlickIfNeeded, and the desired contentWidth or contentHeight must be provided.
ListView width : 180 ; height : 200 contentWidth : 320 flickableDirection : Flickable . AutoFlickDirection model : ContactModel {} delegate : Row { Text text : ‘Name: ‘ + name ; width : 160 } Text text : ‘Number: ‘ + number ; width : 160 } } }
Stacking Order in ListView
The Z value of items determines whether they are rendered above or below other items. ListView uses several different default Z values, depending on what type of item is being created:
Property Default Z value delegate 1 footer 1 header 1 highlight 0 section.delegate 2
These default values are set if the Z value of the item is 0 , so setting the Z value of these items to 0 has no effect. Note that the Z value is of type real, so it is possible to set fractional values like 0.1 .
Reusing items
Since 5.15, ListView can be configured to recycle items instead of instantiating from the delegate whenever new rows are flicked into view. This approach improves performance, depending on the complexity of the delegate. Reusing items is off by default (for backwards compatibility reasons), but can be switched on by setting the reuseItems property to true .
When an item is flicked out, it moves to the reuse pool, which is an internal cache of unused items. When this happens, the ListView::pooled signal is emitted to inform the item about it. Likewise, when the item is moved back from the pool, the ListView::reused signal is emitted.
Any item properties that come from the model are updated when the item is reused. This includes index and row , but also any model roles.
Note: Avoid storing any state inside a delegate. If you do, reset it manually on receiving the ListView::reused signal.
If an item has timers or animations, consider pausing them on receiving the ListView::pooled signal. That way you avoid using the CPU resources for items that are not visible. Likewise, if an item has resources that cannot be reused, they could be freed up.
Note: While an item is in the pool, it might still be alive and respond to connected signals and bindings.
The following example shows a delegate that animates a spinning rectangle. When it is pooled, the animation is temporarily paused:
Component { id : listViewDelegate Rectangle width : 100 height : 50 ListView .onPooled: rotationAnimation . pause () ListView .onReused: rotationAnimation . resume () Rectangle id : rect anchors .centerIn: parent width : 40 height : 5 color : “green” RotationAnimation id : rotationAnimation target : rect duration : ( Math . random () * 2000 ) + 200 from : 0 to : 359 running : true loops : Animation . Infinite } } } }
See also QML Data Models, GridView, PathView, and Qt Quick Examples – Views.
Property Documentation
highlightMoveDuration : int highlightMoveVelocity : real highlightResizeDuration : int highlightResizeVelocity : real These properties control the speed of the move and resize animations for the highlight delegate. highlightFollowsCurrentItem must be true for these properties to have effect. The default value for the velocity properties is 400 pixels/second. The default value for the duration properties is -1, i.e. the highlight will take as much time as necessary to move at the set speed. These properties have the same characteristics as a SmoothedAnimation: if both the velocity and duration are set, the animation will use whichever gives the shorter duration. The move velocity and duration properties are used to control movement due to index changes; for example, when incrementCurrentIndex() is called. When the user flicks a ListView, the velocity from the flick is used to control the movement instead. To set only one property, the other can be set to -1 . For example, if you only want to animate the duration and not velocity, use the following code: highlightMoveDuration: 1000 highlightMoveVelocity: – 1 See also highlightFollowsCurrentItem.
[since QtQuick 2.3] displayMarginBeginning : int [since QtQuick 2.3] displayMarginEnd : int This property allows delegates to be displayed outside of the view geometry. If this value is non-zero, the view will create extra delegates before the start of the view, or after the end. The view will create as many delegates as it can fit into the pixel size specified. For example, if in a vertical view the delegate is 20 pixels high and displayMarginBeginning and displayMarginEnd are both set to 40, then 2 delegates above and 2 delegates below will be created and shown. The default value is 0. This property is meant for allowing certain UI configurations, and not as a performance optimization. If you wish to create delegates outside of the view geometry for performance reasons, you probably want to use the cacheBuffer property instead. This QML property was introduced in QtQuick 2.3.highlightRangeMode : enumeration preferredHighlightBegin : real preferredHighlightEnd : real These properties define the preferred range of the highlight (for the current item) within the view. The preferredHighlightBegin value must be less than the preferredHighlightEnd value. These properties affect the position of the current item when the list is scrolled. For example, if the currently selected item should stay in the middle of the list when the view is scrolled, set the preferredHighlightBegin and preferredHighlightEnd values to the top and bottom coordinates of where the middle item would be. If the currentItem is changed programmatically, the list will automatically scroll so that the current item is in the middle of the view. Furthermore, the behavior of the current item index will occur whether or not a highlight exists. Valid values for highlightRangeMode are: ListView.ApplyRange – the view attempts to maintain the highlight within the range. However, the highlight can move outside of the range at the ends of the list or due to mouse interaction.
ListView.StrictlyEnforceRange – the highlight never moves outside of the range. The current item changes if a keyboard or mouse action would cause the highlight to move outside of the range.
ListView.NoHighlightRange – this is the default value.
currentIndex : int [read-only] currentItem : Item The currentIndex property holds the index of the current item, and currentItem holds the current item. Setting the currentIndex to -1 will clear the highlight and set currentItem to null. If highlightFollowsCurrentItem is true , setting either of these properties will smoothly scroll the ListView so that the current item becomes visible. Note that the position of the current item may only be approximate until it becomes visible in the view.
add : Transition This property holds the transition to apply to items that are added to the view. For example, here is a view that specifies such a transition: ListView { . . . add: Transition { NumberAnimation { properties: “x,y” ; from: 100 ; duration: 1000 } } } Whenever an item is added to the above view, the item will be animated from the position (100,100) to its final x,y position within the view, over one second. The transition only applies to the new items that are added to the view; it does not apply to the items below that are displaced by the addition of the new items. To animate the displaced items, set the displaced or addDisplaced properties. For more details and examples on how to use view transitions, see the ViewTransition documentation. Note: This transition is not applied to the items that are created when the view is initially populated, or when the view’s model changes. (In those cases, the populate transition is applied instead.) Additionally, this transition should not animate the height of the new item; doing so will cause any items beneath the new item to be laid out at the wrong position. Instead, the height can be animated within the onAdd handler in the delegate. See also addDisplaced, populate, and ViewTransition.
addDisplaced : Transition This property holds the transition to apply to items within the view that are displaced by the addition of other items to the view. For example, here is a view that specifies such a transition: ListView { . . . addDisplaced: Transition { NumberAnimation { properties: “x,y” ; duration: 1000 } } } Whenever an item is added to the above view, all items beneath the new item are displaced, causing them to move down (or sideways, if horizontally orientated) within the view. As this displacement occurs, the items’ movement to their new x,y positions within the view will be animated by a NumberAnimation over one second, as specified. This transition is not applied to the new item that has been added to the view; to animate the added items, set the add property. If an item is displaced by multiple types of operations at the same time, it is not defined as to whether the addDisplaced, moveDisplaced or removeDisplaced transition will be applied. Additionally, if it is not necessary to specify different transitions depending on whether an item is displaced by an add, move or remove operation, consider setting the displaced property instead. For more details and examples on how to use view transitions, see the ViewTransition documentation. Note: This transition is not applied to the items that are created when the view is initially populated, or when the view’s model changes. In those cases, the populate transition is applied instead. See also displaced, add, populate, and ViewTransition.
cacheBuffer : int This property determines whether delegates are retained outside the visible area of the view. If this value is greater than zero, the view may keep as many delegates instantiated as it can fit within the buffer specified. For example, if in a vertical view the delegate is 20 pixels high and cacheBuffer is set to 40, then up to 2 delegates above and 2 delegates below the visible area may be created/retained. The buffered delegates are created asynchronously, allowing creation to occur across multiple frames and reducing the likelihood of skipping frames. In order to improve painting performance delegates outside the visible area are not painted. The default value of this property is platform dependent, but will usually be a value greater than zero. Negative values are ignored. Note that cacheBuffer is not a pixel buffer – it only maintains additional instantiated delegates. Note: Setting this property is not a replacement for creating efficient delegates. It can improve the smoothness of scrolling behavior at the expense of additional memory usage. The fewer objects and bindings in a delegate, the faster a view can be scrolled. It is important to realize that setting a cacheBuffer will only postpone issues caused by slow-loading delegates, it is not a solution for this scenario. The cacheBuffer operates outside of any display margins specified by displayMarginBeginning or displayMarginEnd.
[read-only] count : int This property holds the number of items in the view. [read-only] currentSection : string This property holds the section that is currently at the beginning of the view.delegate : Component The delegate provides a template defining each item instantiated by the view. The index is exposed as an accessible index property. Properties of the model are also available depending upon the type of Data Model. The number of objects and bindings in the delegate has a direct effect on the flicking performance of the view. If at all possible, place functionality that is not needed for the normal display of the delegate in a Loader which can load additional components when needed. The ListView will lay out the items based on the size of the root item in the delegate. It is recommended that the delegate’s size be a whole number to avoid sub-pixel alignment of items. The default stacking order of delegate instances is 1 . Note: Delegates are instantiated as needed and may be destroyed at any time. They are parented to ListView’s contentItem, not to the view itself. State should never be stored in a delegate. See also Stacking Order in ListView.
displaced : Transition This property holds the generic transition to apply to items that have been displaced by any model operation that affects the view. This is a convenience for specifying the generic transition to be applied to any items that are displaced by an add, move or remove operation, without having to specify the individual addDisplaced, moveDisplaced and removeDisplaced properties. For example, here is a view that specifies a displaced transition: ListView { . . . displaced: Transition { NumberAnimation { properties: “x,y” ; duration: 1000 } } } When any item is added, moved or removed within the above view, the items below it are displaced, causing them to move down (or sideways, if horizontally orientated) within the view. As this displacement occurs, the items’ movement to their new x,y positions within the view will be animated by a NumberAnimation over one second, as specified. If a view specifies this generic displaced transition as well as a specific addDisplaced, moveDisplaced or removeDisplaced transition, the more specific transition will be used instead of the generic displaced transition when the relevant operation occurs, providing that the more specific transition has not been disabled (by setting enabled to false). If it has indeed been disabled, the generic displaced transition is applied instead. For more details and examples on how to use view transitions, see the ViewTransition documentation. See also addDisplaced, moveDisplaced, removeDisplaced, and ViewTransition.
[read-only] effectiveLayoutDirection : enumeration This property holds the effective layout direction of a horizontally-oriented list. When using the attached property LayoutMirroring::enabled for locale layouts, the visual layout direction of the horizontal list will be mirrored. However, the property layoutDirection will remain unchanged. See also ListView::layoutDirection and LayoutMirroring.This property holds the component to use as the footer. An instance of the footer component is created for each view. The footer is positioned at the end of the view, after any items. The default stacking order of the footer is 1 . See also header, footerItem, and Stacking Order in ListView.
This holds the footer item created from the footer component. An instance of the footer component is created for each view. The footer is positioned at the end of the view, after any items. The default stacking order of the footer is 1 . See also footer, headerItem, and Stacking Order in ListView.
This property determines the positioning of the footer item. Constant Description ListView.InlineFooter (default) The footer is positioned at the end of the content and moves together with the content like an ordinary item. ListView.OverlayFooter The footer is positioned at the end of the view. ListView.PullBackFooter The footer is positioned at the end of the view. The footer can be pushed away by moving the content backwards, and pulled back by moving the content forwards. Note: This property has no effect on the stacking order of the footer. For example, if the footer should be shown above the delegate items when using ListView.OverlayFooter , its Z value should be set to a value higher than that of the delegates. For more information, see Stacking Order in ListView. Note: If footerPositioning is not set to ListView.InlineFooter , the user cannot press and flick the list from the footer. In any case, the footer item may contain items or event handlers that provide custom handling of mouse or touch input. This property was introduced in Qt 5.4.
header : Component This property holds the component to use as the header. An instance of the header component is created for each view. The header is positioned at the beginning of the view, before any items. The default stacking order of the header is 1 . See also footer, headerItem, and Stacking Order in ListView.
[read-only] headerItem : Item This holds the header item created from the header component. An instance of the header component is created for each view. The header is positioned at the beginning of the view, before any items. The default stacking order of the header is 1 . See also header, footerItem, and Stacking Order in ListView. [since Qt 5.4] headerPositioning : enumeration This property determines the positioning of the header item. Constant Description ListView.InlineHeader (default) The header is positioned at the beginning of the content and moves together with the content like an ordinary item. ListView.OverlayHeader The header is positioned at the beginning of the view. ListView.PullBackHeader The header is positioned at the beginning of the view. The header can be pushed away by moving the content forwards, and pulled back by moving the content backwards. Note: This property has no effect on the stacking order of the header. For example, if the header should be shown above the delegate items when using ListView.OverlayHeader , its Z value should be set to a value higher than that of the delegates. For more information, see Stacking Order in ListView. Note: If headerPositioning is not set to ListView.InlineHeader , the user cannot press and flick the list from the header. In any case, the header item may contain items or event handlers that provide custom handling of mouse or touch input. This property was introduced in Qt 5.4.highlight : Component This property holds the component to use as the highlight. An instance of the highlight component is created for each list. The geometry of the resulting component instance is managed by the list so as to stay with the current item, unless the highlightFollowsCurrentItem property is false. The default stacking order of the highlight item is 0 . See also highlightItem, highlightFollowsCurrentItem, ListView Highlight Example, and Stacking Order in ListView.
highlightFollowsCurrentItem : bool This property holds whether the highlight is managed by the view. If this property is true (the default value), the highlight is moved smoothly to follow the current item. Otherwise, the highlight is not moved by the view, and any movement must be implemented by the highlight. Here is a highlight with its motion defined by a SpringAnimation item: Component { id : highlight Rectangle width : 180 ; height : 40 color : “lightsteelblue” ; radius : 5 y : list . currentItem . y Behavior on y { SpringAnimation spring : 3 damping : 0.2 } } } } ListView id : list width : 180 ; height : 200 model : ContactModel {} delegate : Text { text : name } highlight : highlight highlightFollowsCurrentItem : false focus : true } Note that the highlight animation also affects the way that the view is scrolled. This is because the view moves to maintain the highlight within the preferred highlight range (or visible viewport). See also highlight and highlightMoveVelocity.
[read-only] highlightItem : Item This holds the highlight item created from the highlight component. The highlightItem is managed by the view unless highlightFollowsCurrentItem is set to false. The default stacking order of the highlight item is 0 . See also highlight, highlightFollowsCurrentItem, and Stacking Order in ListView. [since 5.7] keyNavigationEnabled : bool This property holds whether the key navigation of the list is enabled. If this is true , the user can navigate the view with a keyboard. It is useful for applications that need to selectively enable or disable mouse and keyboard interaction. By default, the value of this property is bound to interactive to ensure behavior compatibility for existing applications. When explicitly set, it will cease to be bound to the interactive property. This property was introduced in Qt 5.7. See also interactive.keyNavigationWraps : bool This property holds whether the list wraps key navigation. If this is true, key navigation that would move the current item selection past the end of the list instead wraps around and moves the selection to the start of the list, and vice-versa. By default, key navigation is not wrapped.
layoutDirection : enumeration This property holds the layout direction of a horizontally-oriented list. Possible values: Qt.LeftToRight (default) – Items will be laid out from left to right.
Qt.RightToLeft – Items will be laid out from right to left. Setting this property has no effect if the orientation is Qt.Vertical. See also ListView::effectiveLayoutDirection and ListView::verticalLayoutDirection.
model : model This property holds the model providing data for the list. The model provides the set of data that is used to create the items in the view. Models can be created directly in QML using ListModel, ObjectModel, or provided by C++ model classes. If a C++ model class is used, it must be a subclass of QAbstractItemModel or a simple list. See also Data Models.
move : Transition This property holds the transition to apply to items in the view that are being moved due to a move operation in the view’s model. For example, here is a view that specifies such a transition: ListView { . . . move: Transition { NumberAnimation { properties: “x,y” ; duration: 1000 } } } Whenever the model performs a move operation to move a particular set of indexes, the respective items in the view will be animated to their new positions in the view over one second. The transition only applies to the items that are the subject of the move operation in the model; it does not apply to items below them that are displaced by the move operation. To animate the displaced items, set the displaced or moveDisplaced properties. For more details and examples on how to use view transitions, see the ViewTransition documentation. See also moveDisplaced and ViewTransition.
moveDisplaced : Transition This property holds the transition to apply to items that are displaced by a move operation in the view’s model. For example, here is a view that specifies such a transition: ListView { . . . moveDisplaced: Transition { NumberAnimation { properties: “x,y” ; duration: 1000 } } } Whenever the model performs a move operation to move a particular set of indexes, the items between the source and destination indexes of the move operation are displaced, causing them to move upwards or downwards (or sideways, if horizontally orientated) within the view. As this displacement occurs, the items’ movement to their new x,y positions within the view will be animated by a NumberAnimation over one second, as specified. This transition is not applied to the items that are the actual subjects of the move operation; to animate the moved items, set the move property. If an item is displaced by multiple types of operations at the same time, it is not defined as to whether the addDisplaced, moveDisplaced or removeDisplaced transition will be applied. Additionally, if it is not necessary to specify different transitions depending on whether an item is displaced by an add, move or remove operation, consider setting the displaced property instead. For more details and examples on how to use view transitions, see the ViewTransition documentation. See also displaced, move, and ViewTransition.
orientation : enumeration This property holds the orientation of the list. Possible values: ListView.Horizontal – Items are laid out horizontally
ListView.Vertical (default) – Items are laid out vertically Horizontal orientation: Vertical orientation: See also Flickable Direction.
populate : Transition This property holds the transition to apply to the items that are initially created for a view. It is applied to all items that are created when: The view is first created
The view’s model changes in such a way that the visible delegates are completely replaced
The view’s model is reset, if the model is a QAbstractItemModel subclass For example, here is a view that specifies such a transition: ListView { . . . populate: Transition { NumberAnimation { properties: “x,y” ; duration: 1000 } } } When the view is initialized, the view will create all the necessary items for the view, then animate them to their correct positions within the view over one second. However when scrolling the view later, the populate transition does not run, even though delegates are being instantiated as they become visible. When the model changes in a way that new delegates become visible, the add transition is the one that runs. So you should not depend on the populate transition to initialize properties in the delegate, because it does not apply to every delegate. If your animation sets the to value of a property, the property should initially have the to value, and the animation should set the from value in case it is animated: ListView { . . . delegate: Rectangle { opacity: 1 } populate: Transition { NumberAnimation { property: “opacity” ; from: 0 ; to: 1 ; duration: 1000 } } } For more details and examples on how to use view transitions, see the ViewTransition documentation. See also add and ViewTransition.
remove : Transition This property holds the transition to apply to items that are removed from the view. For example, here is a view that specifies such a transition: ListView { . . . remove: Transition { ParallelAnimation { NumberAnimation { property: “opacity” ; to: 0 ; duration: 1000 } NumberAnimation { properties: “x,y” ; to: 100 ; duration: 1000 } } } } Whenever an item is removed from the above view, the item will be animated to the position (100,100) over one second, and in parallel will also change its opacity to 0. The transition only applies to the items that are removed from the view; it does not apply to the items below them that are displaced by the removal of the items. To animate the displaced items, set the displaced or removeDisplaced properties. Note that by the time the transition is applied, the item has already been removed from the model; any references to the model data for the removed index will not be valid. Additionally, if the delayRemove attached property has been set for a delegate item, the remove transition will not be applied until delayRemove becomes false again. For more details and examples on how to use view transitions, see the ViewTransition documentation. See also removeDisplaced and ViewTransition.
removeDisplaced : Transition This property holds the transition to apply to items in the view that are displaced by the removal of other items in the view. For example, here is a view that specifies such a transition: ListView { . . . removeDisplaced: Transition { NumberAnimation { properties: “x,y” ; duration: 1000 } } } Whenever an item is removed from the above view, all items beneath it are displaced, causing them to move upwards (or sideways, if horizontally orientated) within the view. As this displacement occurs, the items’ movement to their new x,y positions within the view will be animated by a NumberAnimation over one second, as specified. This transition is not applied to the item that has actually been removed from the view; to animate the removed items, set the remove property. If an item is displaced by multiple types of operations at the same time, it is not defined as to whether the addDisplaced, moveDisplaced or removeDisplaced transition will be applied. Additionally, if it is not necessary to specify different transitions depending on whether an item is displaced by an add, move or remove operation, consider setting the displaced property instead. For more details and examples on how to use view transitions, see the ViewTransition documentation. See also displaced, remove, and ViewTransition.
[since 5.15] reuseItems : bool This property enables you to reuse items that are instantiated from the delegate. If set to false , any currently pooled items are destroyed. This property is false by default. This property was introduced in Qt 5.15. See also Reusing items, pooled(), and reused().section group section.criteria : enumeration section.delegate : Component section.labelPositioning : enumeration section.property : string These properties determine the expression to be evaluated and appearance of the section labels. section.property holds the name of the property that is the basis of each section. section.criteria holds the criteria for forming each section based on section.property . This value can be one of: ViewSection.FullString (default) – sections are created based on the section.property value.
value. ViewSection.FirstCharacter – sections are created based on the first character of the section.property value (for example, ‘A’, ‘B’, ‘C’ sections, etc. for an address book) A case insensitive comparison is used when determining section boundaries. section.delegate holds the delegate component for each section. The default stacking order of section delegate instances is 2 . section.labelPositioning determines whether the current and/or next section labels stick to the start/end of the view, and whether the labels are shown inline. This value can be a combination of: ViewSection.InlineLabels – section labels are shown inline between the item delegates separating sections (default).
ViewSection.CurrentLabelAtStart – the current section label sticks to the start of the view as it is moved.
ViewSection.NextLabelAtEnd – the next section label (beyond all visible sections) sticks to the end of the view as it is moved. Note: Enabling ViewSection.NextLabelAtEnd requires the view to scan ahead for the next section, which has performance implications, especially for slower models. Each item in the list has attached properties named ListView.section , ListView.previousSection and ListView.nextSection . For example, here is a ListView that displays a list of animals, separated into sections. Each item in the ListView is placed in a different section depending on the “size” property of the model item. The sectionHeading delegate component provides the light blue bar that marks the beginning of each section. Component { id : sectionHeading Rectangle width : container . width height : childrenRect . height color : “lightsteelblue” required property string section Text text : parent . section font .bold: true font .pixelSize: 20 } } } ListView id : view anchors .top: parent . top anchors .bottom: buttonBar . top width : parent . width model : animalsModel delegate : Text { required property string name text : name font .pixelSize: 18 } section .property: “size” section .criteria: ViewSection . FullString section .delegate: sectionHeading } Note: Adding sections to a ListView does not automatically re-order the list items by the section criteria. If the model is not ordered by section, then it is possible that the sections created will not be unique; each boundary between differing sections will result in a section header being created even if that section exists elsewhere. See also ListView examples and Stacking Order in ListView.
snapMode : enumeration This property determines how the view scrolling will settle following a drag or flick. The possible values are: ListView.NoSnap (default) – the view stops anywhere within the visible area.
ListView.SnapToItem – the view settles with an item aligned with the start of the view.
ListView.SnapOneItem – the view settles no more than one item away from the first visible item at the time the mouse button is released. This mode is particularly useful for moving one page at a time. When SnapOneItem is enabled, the ListView will show a stronger affinity to neighboring items when movement occurs. For example, a short drag that snaps back to the current item with SnapToItem might snap to a neighboring item with SnapOneItem. snapMode does not affect the currentIndex. To update the currentIndex as the list is moved, set highlightRangeMode to ListView.StrictlyEnforceRange . See also highlightRangeMode.
spacing : real This property holds the spacing between items. The default value is 0.
verticalLayoutDirection : enumeration This property holds the layout direction of a vertically-oriented list. Possible values: ListView.TopToBottom (default) – Items are laid out from the top of the view down to the bottom of the view.
ListView.BottomToTop – Items are laid out from the bottom of the view up to the top of the view. Setting this property has no effect if the orientation is Qt.Horizontal. See also ListView::layoutDirection.
Attached Property Documentation
ListView.delayRemove : bool This attached property holds whether the delegate may be destroyed. It is attached to each instance of the delegate. The default value is false. It is sometimes necessary to delay the destruction of an item until an animation completes. The example delegate below ensures that the animation completes before the item is removed from the list. Component { id : delegate Item SequentialAnimation id : removeAnimation PropertyAction target : wrapper ; property : “ListView.delayRemove” ; value : true } NumberAnimation target : wrapper ; property : “scale” ; to : 0 ; duration : 250 ; easing .type: Easing . InOutQuad } PropertyAction target : wrapper ; property : “ListView.delayRemove” ; value : false } } ListView .onRemove: removeAnimation . start () } } If a remove transition has been specified, it will not be applied until delayRemove is returned to false .
ListView.isCurrentItem : bool This attached property is true if this delegate is the current item; otherwise false. It is attached to each instance of the delegate. This property may be used to adjust the appearance of the current item, for example: ListView width : 180 ; height : 200 Component { id : contactsDelegate Rectangle id : wrapper width : 180 height : contactInfo . height color : ListView . isCurrentItem ? “black” : “red” Text id : contactInfo text : name + “: ” + number color : wrapper . ListView . isCurrentItem ? “red” : “black” } } } model : ContactModel {} delegate : contactsDelegate focus : true }
ListView.nextSection : string This attached property holds the section of the next element. It is attached to each instance of the delegate. The section is evaluated using the section properties.
ListView.previousSection : string This attached property holds the section of the previous element. It is attached to each instance of the delegate. The section is evaluated using the section properties.
[read-only] ListView.section : string This attached property holds the section of this element. It is attached to each instance of the delegate. The section is evaluated using the section properties.ListView.view : ListView This attached property holds the view that manages this delegate instance. It is attached to each instance of the delegate and also to the header, the footer, the section and the highlight delegates.
Attached Signal Documentation
add() This attached signal is emitted immediately after an item is added to the view. If an add transition is specified, it is applied immediately after this signal is handled. Note: The corresponding handler is onAdd .
pooled() This signal is emitted after an item has been added to the reuse pool. You can use it to pause ongoing timers or animations inside the item, or free up resources that cannot be reused. This signal is emitted only if the reuseItems property is true . Note: The corresponding handler is onPooled . See also Reusing items, reuseItems, and reused().
remove() This attached signal is emitted immediately before an item is removed from the view. If a remove transition has been specified, it is applied after this signal is handled, providing that delayRemove is false. Note: The corresponding handler is onRemove .
reused() This signal is emitted after an item has been reused. At this point, the item has been taken out of the pool and placed inside the content view, and the model properties such as index and row have been updated. Other properties that are not provided by the model does not change when an item is reused. You should avoid storing any state inside a delegate, but if you do, manually reset that state on receiving this signal. This signal is emitted when the item is reused, and not the first time the item is created. This signal is emitted only if the reuseItems property is true . Note: The corresponding handler is onReused . See also Reusing items, reuseItems, and pooled().
Method Documentation
positionViewAtBeginning() positionViewAtEnd() Positions the view at the beginning or end, taking into account any header or footer. It is not recommended to use contentX or contentY to position the view at a particular index. This is unreliable since removing items from the start of the list does not cause all other items to be repositioned, and because the actual start of the view can vary based on the size of the delegates. Note: methods should only be called after the Component has completed. To position the view at startup, this method should be called by Component.onCompleted. For example, to position the view at the end on startup: Component . onCompleted: positionViewAtEnd()
decrementCurrentIndex() Decrements the current index. The current index will wrap if keyNavigationWraps is true and it is currently at the beginning. This method has no effect if the count is zero. Note: methods should only be called after the Component has completed.
[since 5.1] forceLayout() Responding to changes in the model is usually batched to happen only once per frame. This means that inside script blocks it is possible for the underlying model to have changed, but the ListView has not caught up yet. This method forces the ListView to immediately respond to any outstanding changes in the model. Note: methods should only be called after the Component has completed. This method was introduced in Qt 5.1.incrementCurrentIndex() Increments the current index. The current index will wrap if keyNavigationWraps is true and it is currently at the end. This method has no effect if the count is zero. Note: methods should only be called after the Component has completed.
int indexAt(real x, real y) Returns the index of the visible item containing the point x, y in content coordinates. If there is no item at the point specified, or the item is not visible -1 is returned. If the item is outside the visible area, -1 is returned, regardless of whether an item will exist at that point when scrolled into view. Note: methods should only be called after the Component has completed.
Item itemAt(real x, real y) Returns the visible item containing the point x, y in content coordinates. If there is no item at the point specified, or the item is not visible null is returned. If the item is outside the visible area, null is returned, regardless of whether an item will exist at that point when scrolled into view. Note: methods should only be called after the Component has completed.
[since 5.13] Item itemAtIndex(int index) Returns the item for index. If there is no item for that index, for example because it has not been created yet, or because it has been panned out of the visible area and removed from the cache, null is returned. Note: this method should only be called after the Component has completed. The returned value should also not be stored since it can turn to null as soon as control goes out of the calling scope, if the view releases that item. This method was introduced in Qt 5.13.
Qt 4.8: QML ListView Element
QML ListView Element
The ListView item provides a list view of items provided by a model. More…
Inherits Flickable
This element was introduced in Qt 4.7.
Properties
Attached Properties
Attached Signal Handlers
Methods
Detailed Description
A ListView displays data from models created from built-in QML elements like ListModel and XmlListModel, or custom model classes defined in C++ that inherit from QAbstractListModel.
A ListView has a model, which defines the data to be displayed, and a delegate, which defines how the data should be displayed. Items in a ListView are laid out horizontally or vertically. List views are inherently flickable because ListView inherits from Flickable.
Example Usage
The following example shows the definition of a simple list model defined in a file called ContactModel.qml :
import QtQuick 1.0 ListModel ListElement name : “Bill Smith” number : “555 3264” } ListElement name : “John Brown” number : “555 8426” } ListElement name : “Sam Wise” number : “555 0473” } }
Another component can display this model data in a ListView, like this:
import QtQuick 1.0 ListView { width : 180 ; height : 200 model : ContactModel {} delegate : Text { text : name + “: ” + number } }
Here, the ListView creates a ContactModel component for its model, and a Text element for its delegate. The view will create a new Text component for each item in the model. Notice the delegate is able to access the model’s name and number data directly.
An improved list view is shown below. The delegate is visually improved and is moved into a separate contactDelegate component.
Rectangle width : 180 ; height : 200 Component id : contactDelegate Item width : 180 ; height : 40 Column Text text : ‘Name: ‘ + name } Text text : ‘Number: ‘ + number } } } } ListView { anchors .fill: parent model : ContactModel {} delegate : contactDelegate highlight : Rectangle { color : “lightsteelblue” ; radius : 5 } focus : true } }
The currently selected item is highlighted with a blue Rectangle using the highlight property, and focus is set to true to enable keyboard navigation for the list view. The list view itself is a focus scope (see the focus documentation page for more details).
Delegates are instantiated as needed and may be destroyed at any time. State should never be stored in a delegate.
ListView attaches a number of properties to the root item of the delegate, for example ListView.isCurrentItem . In the following example, the root delegate item can access this attached property directly as ListView.isCurrentItem , while the child contactInfo object must refer to this property as wrapper.ListView.isCurrentItem .
ListView { width : 180 ; height : 200 Component id : contactsDelegate Rectangle id : wrapper width : 180 height : contactInfo . height color : ListView . isCurrentItem ? “black” : “red” Text id : contactInfo text : name + “: ” + number color : wrapper . ListView . isCurrentItem ? “red” : “black” } } } model : ContactModel {} delegate : contactsDelegate focus : true }
Note: Views do not enable clip automatically. If the view is not clipped by another item or the screen, it will be necessary to set clip: true in order to have the out of view items clipped nicely.
See also QML Data Models, GridView, and ListView examples.
Property Documentation
cacheBuffer : int This property determines whether delegates are retained outside the visible area of the view. If this value is non-zero, the view keeps as many delegates instantiated as it can fit within the buffer specified. For example, if in a vertical view the delegate is 20 pixels high and cacheBuffer is set to 40, then up to 2 delegates above and 2 delegates below the visible area may be retained. Note that cacheBuffer is not a pixel buffer – it only maintains additional instantiated delegates. Setting this value can improve the smoothness of scrolling behavior at the expense of additional memory usage. It is not a substitute for creating efficient delegates; the fewer elements in a delegate, the faster a view can be scrolled.
read-onlycount : int This property holds the number of items in the view.
currentIndex : int currentItem : Item The currentIndex property holds the index of the current item, and currentItem holds the current item. Setting the currentIndex to -1 will clear the highlight and set currentItem to null. If highlightFollowsCurrentItem is true , setting either of these properties will smoothly scroll the ListView so that the current item becomes visible. Note that the position of the current item may only be approximate until it becomes visible in the view.
read-onlycurrentSection : string This property holds the section that is currently at the beginning of the view.
delegate : Component The delegate provides a template defining each item instantiated by the view. The index is exposed as an accessible index property. Properties of the model are also available depending upon the type of Data Model. The number of elements in the delegate has a direct effect on the flicking performance of the view. If at all possible, place functionality that is not needed for the normal display of the delegate in a Loader which can load additional elements when needed. The ListView will lay out the items based on the size of the root item in the delegate. It is recommended that the delagate’s size be a whole number to avoid sub-pixel alignment of items. Note: Delegates are instantiated as needed and may be destroyed at any time. State should never be stored in a delegate.
footer : Component This property holds the component to use as the footer. An instance of the footer component is created for each view. The footer is positioned at the end of the view, after any items. See also header.
header : Component This property holds the component to use as the header. An instance of the header component is created for each view. The header is positioned at the beginning of the view, before any items. See also footer.
highlight : Component This property holds the component to use as the highlight. An instance of the highlight component is created for each list. The geometry of the resulting component instance is managed by the list so as to stay with the current item, unless the highlightFollowsCurrentItem property is false. See also highlightItem, highlightFollowsCurrentItem, and ListView examples.
highlightFollowsCurrentItem : bool This property holds whether the highlight is managed by the view. If this property is true (the default value), the highlight is moved smoothly to follow the current item. Otherwise, the highlight is not moved by the view, and any movement must be implemented by the highlight. Here is a highlight with its motion defined by a SpringAnimation item: Component id : highlight Rectangle width : 180 ; height : 40 color : “lightsteelblue” ; radius : 5 y : list . currentItem . y Behavior on y { SpringAnimation spring : 3 damping : 0.2 } } } } ListView id : list width : 180 ; height : 200 model : ContactModel {} delegate : Text { text : name } highlight : highlight highlightFollowsCurrentItem : false focus : true } Note that the highlight animation also affects the way that the view is scrolled. This is because the view moves to maintain the highlight within the preferred highlight range (or visible viewport). See also highlight and highlightMoveSpeed.
read-onlyhighlightItem : Item This holds the highlight item created from the highlight component. The highlightItem is managed by the view unless highlightFollowsCurrentItem is set to false. See also highlight and highlightFollowsCurrentItem.
highlightMoveSpeed : real highlightMoveDuration : int highlightResizeSpeed : real highlightResizeDuration : int These properties hold the move and resize animation speed of the highlight delegate. highlightFollowsCurrentItem must be true for these properties to have effect. The default value for the speed properties is 400 pixels/second. The default value for the duration properties is -1, i.e. the highlight will take as much time as necessary to move at the set speed. These properties have the same characteristics as a SmoothedAnimation. See also highlightFollowsCurrentItem.
keyNavigationWraps : bool This property holds whether the list wraps key navigation. If this is true, key navigation that would move the current item selection past the end of the list instead wraps around and moves the selection to the start of the list, and vice-versa. By default, key navigation is not wrapped.
layoutDirection : enumeration This property holds the layout direction of the horizontal list. Possible values: Qt.LeftToRight (default) – Items will be laid out from left to right.
Qt.RightToLeft – Items will be laid out from right to let. When using the attached property LayoutMirroring::enabled for locale layouts, the layout direction of the horizontal list will be mirrored. However, the actual property layoutDirection will remain unchanged. You can use the property LayoutMirroring::enabled to determine whether the direction has been mirrored. See also LayoutMirroring.
model : model This property holds the model providing data for the list. The model provides the set of data that is used to create the items in the view. Models can be created directly in QML using ListModel, XmlListModel or VisualItemModel, or provided by C++ model classes. If a C++ model class is used, it must be a subclass of QAbstractItemModel or a simple list. See also Data Models.
orientation : enumeration This property holds the orientation of the list. Possible values: ListView.Horizontal – Items are laid out horizontally
ListView.Vertical (default) – Items are laid out vertically Horizontal orientation: Vertical orientation:
preferredHighlightBegin : real preferredHighlightEnd : real highlightRangeMode : enumeration These properties define the preferred range of the highlight (for the current item) within the view. The preferredHighlightBegin value must be less than the preferredHighlightEnd value. These properties affect the position of the current item when the list is scrolled. For example, if the currently selected item should stay in the middle of the list when the view is scrolled, set the preferredHighlightBegin and preferredHighlightEnd values to the top and bottom coordinates of where the middle item would be. If the currentItem is changed programmatically, the list will automatically scroll so that the current item is in the middle of the view. Furthermore, the behavior of the current item index will occur whether or not a highlight exists. Valid values for highlightRangeMode are: ListView.ApplyRange – the view attempts to maintain the highlight within the range. However, the highlight can move outside of the range at the ends of the list or due to mouse interaction.
ListView.StrictlyEnforceRange – the highlight never moves outside of the range. The current item changes if a keyboard or mouse action would cause the highlight to move outside of the range.
ListView.NoHighlightRange – this is the default value.
section.property : string section.criteria : enumeration section.delegate : Component These properties hold the expression to be evaluated for the section attached property. The section attached property enables a ListView to be visually separated into different parts. These properties determine how sections are created. section.property holds the name of the property that is the basis of each section. section.criteria holds the criteria for forming each section based on section.property . This value can be one of: ViewSection.FullString (default) – sections are created based on the section.property value.
value. ViewSection.FirstCharacter – sections are created based on the first character of the section.property value (for example, ‘A’, ‘B’, ‘C’ sections, etc. for an address book) section.delegate holds the delegate component for each section. Each item in the list has attached properties named ListView.section , ListView.previousSection and ListView.nextSection . These may be used to place a section header for related items. For example, here is a ListView that displays a list of animals, separated into sections. Each item in the ListView is placed in a different section depending on the “size” property of the model item. The sectionHeading delegate component provides the light blue bar that marks the beginning of each section. Note: Adding sections to a ListView does not automatically re-order the list items by the section criteria. If the model is not ordered by section, then it is possible that the sections created will not be unique; each boundary between differing sections will result in a section header being created even if that section exists elsewhere. See also ListView examples.
snapMode : enumeration This property determines how the view scrolling will settle following a drag or flick. The possible values are: ListView.NoSnap (default) – the view stops anywhere within the visible area.
ListView.SnapToItem – the view settles with an item aligned with the start of the view.
ListView.SnapOneItem – the view settles no more than one item away from the first visible item at the time the mouse button is released. This mode is particularly useful for moving one page at a time. snapMode does not affect the currentIndex. To update the currentIndex as the list is moved, set highlightRangeMode to ListView.StrictlyEnforceRange . See also highlightRangeMode.
spacing : real This property holds the spacing between items. The default value is 0.
Attached Property Documentation
read-onlyListView.delayRemove : bool This attached property holds whether the delegate may be destroyed. It is attached to each instance of the delegate. It is sometimes necessary to delay the destruction of an item until an animation completes. The example delegate below ensures that the animation completes before the item is removed from the list. Component id : delegate Item ListView .onRemove: SequentialAnimation { PropertyAction target : wrapper ; property : “ListView.delayRemove” ; value : true } NumberAnimation target : wrapper ; property : “scale” ; to : 0 ; duration : 250 ; easing .type: Easing . InOutQuad } PropertyAction target : wrapper ; property : “ListView.delayRemove” ; value : false } } } }
read-onlyListView.isCurrentItem : bool This attached property is true if this delegate is the current item; otherwise false. It is attached to each instance of the delegate. This property may be used to adjust the appearance of the current item, for example: ListView width : 180 ; height : 200 Component id : contactsDelegate Rectangle id : wrapper width : 180 height : contactInfo . height color : ListView . isCurrentItem ? “black” : “red” Text id : contactInfo text : name + “: ” + number color : wrapper . ListView . isCurrentItem ? “red” : “black” } } } model : ContactModel {} delegate : contactsDelegate focus : true }
read-onlyListView.nextSection : string This attached property holds the section of the next element. It is attached to each instance of the delegate. The section is evaluated using the section properties.
read-onlyListView.previousSection : string This attached property holds the section of the previous element. It is attached to each instance of the delegate. The section is evaluated using the section properties.
read-onlyListView.section : string This attached property holds the section of this element. It is attached to each instance of the delegate. The section is evaluated using the section properties.
read-onlyListView.view : ListView This attached property holds the view that manages this delegate instance. It is attached to each instance of the delegate.
Attached Signal Handler Documentation
ListView::onAdd () This attached handler is called immediately after an item is added to the view.
ListView::onRemove () This attached handler is called immediately before an item is removed from the view.
Method Documentation
ListView::decrementCurrentIndex () Decrements the current index. The current index will wrap if keyNavigationWraps is true and it is currently at the beginning. This method has no effect if the count is zero. Note: methods should only be called after the Component has completed.
ListView::incrementCurrentIndex () Increments the current index. The current index will wrap if keyNavigationWraps is true and it is currently at the end. This method has no effect if the count is zero. Note: methods should only be called after the Component has completed.
int ListView::indexAt ( int x, int y ) Returns the index of the visible item containing the point x, y in content coordinates. If there is no item at the point specified, or the item is not visible -1 is returned. If the item is outside the visible area, -1 is returned, regardless of whether an item will exist at that point when scrolled into view. Note: methods should only be called after the Component has completed.
ListView::positionViewAtBeginning () Positions the view at the beginning or end, taking into account any header or footer. It is not recommended to use contentX or contentY to position the view at a particular index. This is unreliable since removing items from the start of the list does not cause all other items to be repositioned, and because the actual start of the view can vary based on the size of the delegates. Note: methods should only be called after the Component has completed. To position the view at startup, this method should be called by Component.onCompleted. For example, to position the view at the end on startup: Component . onCompleted: positionViewAtEnd() This documentation was introduced in QtQuick 1.1.
ListView::positionViewAtEnd () Positions the view at the beginning or end, taking into account any header or footer. It is not recommended to use contentX or contentY to position the view at a particular index. This is unreliable since removing items from the start of the list does not cause all other items to be repositioned, and because the actual start of the view can vary based on the size of the delegates. Note: methods should only be called after the Component has completed. To position the view at startup, this method should be called by Component.onCompleted. For example, to position the view at the end on startup: Component . onCompleted: positionViewAtEnd() This documentation was introduced in QtQuick 1.1.
QML Listview space items to fill width
I have a ListView (horizontal orientation) in my qml containing some fixed-size elements. I want items to be spaced out to fill the entiew width of ListView element. So if there are less elements I want them to be spaced out more. Basically what I need is exactly like Layout.fillWidth = true property of RowLayout but for ListView.
I can count how many items I have, then subtract total items width from ListView width, divide by items count and assign the spacing but it seems too silly to do. Is there a way to do this automatically like in RowLayout?
Or maybe I need to use something different from ListView for this? Something like RowLayout but that I can assign my list data model to?
So you have finished reading the qml listview topic article, if you find this article useful, please share it. Thank you very much. See more: ListView QML, Mousearea qml, qml listview clear, Flickable QML, ScrollBar qml, Itemdelegate qml, qml listview delegate index, qml listview header example