You are looking for information, articles, knowledge about the topic nail salons open on sunday near me 수열 의 합 시그마 on Google, you do not find the information you need! Here are the best content compiled and compiled by the https://chewathai27.com/to team, along with other related topics such as: 수열 의 합 시그마 수열의 합 시그마 공식, 시그마 계산법, 수열의 합 공식, 등비수열 시그마, 등비수열의 합, 시그마 변형, 수열의 합 문제, 시그마 합 공식
여러가지 수열의 합, 시그마(∑) – 수학방
- Article author: mathbang.net
- Reviews from users: 33855 Ratings
- Top rated: 4.5
- Lowest rated: 1
- Summary of article content: Articles about 여러가지 수열의 합, 시그마(∑) – 수학방 등차수열의 합, 등비수열의 합에 이어 여러 가지 수열의 합이에요. 여기서는 시그마(∑)라는 새로운 기호와 표현법을 공부할 거예요. 시그마가 나타내는 것과 시그마와 … …
- Most searched keywords: Whether you are looking for 여러가지 수열의 합, 시그마(∑) – 수학방 등차수열의 합, 등비수열의 합에 이어 여러 가지 수열의 합이에요. 여기서는 시그마(∑)라는 새로운 기호와 표현법을 공부할 거예요. 시그마가 나타내는 것과 시그마와 … 등차수열의 합, 등비수열의 합에 이어 여러 가지 수열의 합이에요. 여기서는 시그마(∑)라는 새로운 기호와 표현법을 공부할 거예요. 시그마가 나타내는 것과 시그마와 관련된 숫자, 문자의 위치가 어디인지 잘 알..
- Table of Contents:
여러가지 수열의 합 시그마(∑)
댓글(22개) 펼치기닫기
[수학I] 31. 수열의 합 ∑(시그마)의 뜻과 성질 (개념+수학문제)
- Article author: calcproject.tistory.com
- Reviews from users: 47093 Ratings
- Top rated: 4.4
- Lowest rated: 1
- Summary of article content: Articles about [수학I] 31. 수열의 합 ∑(시그마)의 뜻과 성질 (개념+수학문제) ∑(시그마)는 다음과 같은 성질을 가집니다. … 1) 두 수열의 합의 제1항부터 제n항까지의 합은 각 수열의 제1항부터 제n항까지의 합을 더한 것과 같다. 2) … …
- Most searched keywords: Whether you are looking for [수학I] 31. 수열의 합 ∑(시그마)의 뜻과 성질 (개념+수학문제) ∑(시그마)는 다음과 같은 성질을 가집니다. … 1) 두 수열의 합의 제1항부터 제n항까지의 합은 각 수열의 제1항부터 제n항까지의 합을 더한 것과 같다. 2) … * 같이 보면 좋은 글 📄 등차수열의 합 📄 배수의 합, 서로소인 수의 합 📄 등비수열의 합 * ∑ : 수열의 합 일반항을 아는 수열의 합이 주어진다면 어떻게 간단하게 표현할 수 있을까요? 1+2+3+4+…+10은 수열..
- Table of Contents:
알리미
태그
댓글
(0)
공지사항
카테고리
★
최근글
인기글
방문자 수
티스토리툴바
[수학1] 수열의 합, 시그마 공식 : 네이버 블로그
- Article author: m.blog.naver.com
- Reviews from users: 20393 Ratings
- Top rated: 4.9
- Lowest rated: 1
- Summary of article content: Articles about [수학1] 수열의 합, 시그마 공식 : 네이버 블로그 수열의 합인 시그마를 어떻게 쓰는지 설명했고. 시그마 공식에서 k에 1차, 2차, 3차식 항들의 합 공식을 설명했습니다. 그중에 2차식은 증명을 해봤고. …
- Most searched keywords: Whether you are looking for [수학1] 수열의 합, 시그마 공식 : 네이버 블로그 수열의 합인 시그마를 어떻게 쓰는지 설명했고. 시그마 공식에서 k에 1차, 2차, 3차식 항들의 합 공식을 설명했습니다. 그중에 2차식은 증명을 해봤고.
- Table of Contents:
카테고리 이동
수학 입시 교육 블로그
이 블로그
수학1
카테고리 글
카테고리
이 블로그
수학1
카테고리 글
수열의 합, 시그마(∑) :: 기본 공식까지 다지기
- Article author: skybluestory.tistory.com
- Reviews from users: 1532 Ratings
- Top rated: 4.2
- Lowest rated: 1
- Summary of article content: Articles about 수열의 합, 시그마(∑) :: 기본 공식까지 다지기 이번에 다뤄볼 주제는, 시그마($\sum$) :: 수열의 합입니다. 시그마를 잘 배워둔다면 앞으로 여러 가지 수열들의 합을 구할 때 흔히 말하는 하나하나 … …
- Most searched keywords: Whether you are looking for 수열의 합, 시그마(∑) :: 기본 공식까지 다지기 이번에 다뤄볼 주제는, 시그마($\sum$) :: 수열의 합입니다. 시그마를 잘 배워둔다면 앞으로 여러 가지 수열들의 합을 구할 때 흔히 말하는 하나하나 … 이번에 다뤄볼 주제는, 시그마($\sum$) :: 수열의 합입니다. 시그마를 잘 배워둔다면 앞으로 여러 가지 수열들의 합을 구할 때 흔히 말하는 하나하나 계산하는 과정 없이 공식만으로 아주 쉽고 편리하게 구할 수..
- Table of Contents:
태그
‘MATH♪’ Related Articles
공지사항
최근 포스트
태그
검색
전체 방문자
티스토리툴바
수열 의 합 시그마
- Article author: lms.kumoh.ac.kr
- Reviews from users: 44393 Ratings
- Top rated: 3.5
- Lowest rated: 1
- Summary of article content: Articles about 수열 의 합 시그마 수들의 수치 합계를 나타내는 기호(수열의 합을 간단하게 표현 가능). 시그마(∑ ) 정의. 1부터 n항까지 자연수의 합. • 1 + 2 + 3 + 4 + 5 + ∙ ∙ ∙ + n = . …
- Most searched keywords: Whether you are looking for 수열 의 합 시그마 수들의 수치 합계를 나타내는 기호(수열의 합을 간단하게 표현 가능). 시그마(∑ ) 정의. 1부터 n항까지 자연수의 합. • 1 + 2 + 3 + 4 + 5 + ∙ ∙ ∙ + n = .
- Table of Contents:
수열의 합을 시그마로 :: winner
- Article author: j1w2k3.tistory.com
- Reviews from users: 46050 Ratings
- Top rated: 3.3
- Lowest rated: 1
- Summary of article content: Articles about 수열의 합을 시그마로 :: winner 00. 수열의 합을 시그마로 시그마 만들기로 블로그를 썼는데 이번에 예제 문제들을 좀 더 보강하여 문제들을 풀다 보면 자연스럽게 시그마에 대해서 … …
- Most searched keywords: Whether you are looking for 수열의 합을 시그마로 :: winner 00. 수열의 합을 시그마로 시그마 만들기로 블로그를 썼는데 이번에 예제 문제들을 좀 더 보강하여 문제들을 풀다 보면 자연스럽게 시그마에 대해서 … 00. 수열의 합을 시그마로 시그마 만들기로 블로그를 썼는데 이번에 예제 문제들을 좀 더 보강하여 문제들을 풀다 보면 자연스럽게 시그마에 대해서 이해를 할 수 있도록 만들어 보았습니다. 수학을 열심히 공부..
- Table of Contents:
수열의 합을 시그마로
티스토리툴바
[수학1] 수열 – 수열의합 시그마
- Article author: how-math.tistory.com
- Reviews from users: 33375 Ratings
- Top rated: 4.1
- Lowest rated: 1
- Summary of article content: Articles about [수학1] 수열 – 수열의합 시그마 [수학1] 수열 – 수열의합 시그마 [수학1] 수열 – 수열의합 시그마 등차수열의 일반항과 등차수열의 합 [수학1] 수열 – 수열의합 시그마 등비수열의 … …
- Most searched keywords: Whether you are looking for [수학1] 수열 – 수열의합 시그마 [수학1] 수열 – 수열의합 시그마 [수학1] 수열 – 수열의합 시그마 등차수열의 일반항과 등차수열의 합 [수학1] 수열 – 수열의합 시그마 등비수열의 … [수학1] 수열 – 수열의합 시그마 [수학1] 수열 – 수열의합 시그마 등차수열의 일반항과 등차수열의 합 [수학1] 수열 – 수열의합 시그마 등비수열의 일반항과 등비수열의 합 [수학1] 수열 – 수열의합 시그마 시그마..
- Table of Contents:
태그
관련글
댓글0
티스토리툴바
See more articles in the same category here: Top 455 tips update new.
여러가지 수열의 합, 시그마(∑)
등차수열의 합, 등비수열의 합에 이어 여러 가지 수열의 합이에요. 여기서는 시그마(∑)라는 새로운 기호와 표현법을 공부할 거예요. 시그마가 나타내는 것과 시그마와 관련된 숫자, 문자의 위치가 어디인지 잘 알아두세요. 물론 그 위치에 있는 문자와 숫자가 어떤 의미인지도 잘 알아야 하고요.
처음 보는 이상하게 생긴 기호라 많이 낯설 거예요. 새로운 기호를 공부하므로 기호를 식으로 식을 기호로 바꾸는 연습이 필요합니다. 어렵지는 않으니까 금방 할 수 있을 거예요.
여러 가지 수열의 합
이제까지 수열을 a 1 , a 2 , a 3 , a 4 , …, a n – 1 , a n 으로 표현했어요. 그리고 이 수열의 합 S n 은 공식을 이용해서 구했고요. 그런데 등차수열의 합, 등비수열의 합은 제1항부터 제n항까지의 합을 구했어요. 물론 공식을 잘 활용하면 다른 범위의 수열의 합을 구할 수도 있긴 있죠.
이제부터는 수열의 합을 표현하는 다른 방법을 알아보죠.
예를 들어 “제1항부터 제n항까지의 합을 구하라.” 이 말을 간단하게 식으로 나타낼 수 있으면 편하겠죠? 이처럼 말로 길게 써야 하는 수열의 합을 쉽게 나타내는 방법이 있어요.
모양이 좀 이상하게 생겼죠? 저기 가운데 뾰족하게 생긴 걸 “시그마”라고 읽어요. 합이니까 영어로는 sum인데, 첫 글자 s에 해당하는 그리스 문자가 바로 시그마(∑)예요.
시그마를 제외한 나머지 자리에 번호를 붙여봤어요. 번호에 해당하는 내용이 어떤 건지 알아보죠.
①에는 문자가 들어가요. 문자는 k, i 등 어떤 거라도 상관없어요. 다만, 대게 n은 항의 순서를 나타내는 문자라서 n은 잘 사용하지 않아요.
②는 수열의 합을 구할 시작 항의 번호를 써요. 제1항부터 합을 구하려면 1, 제2항부터 합을 구하려면 2를 써요.
③은 수열의 합을 구할 마지막 항의 번호를 써요. 제100항까지 합을 구하려면 100, 제n항까지 합을 구하려면 n을 써요.
④는 수열의 일반항을 써요. 수열의 일반항에서는 n을 이용해서 a n = (n에 대한 식)의 꼴이었죠? 여기서는 n이 아니어도 상관없는데 반드시 ①에서 사용했던 문자에 대한 식이어야 해요. ①이 k였다면 k에 대한 식, i였다면 i에 대한 식이어야 해요.
n은 항의 순서를 나타내니까 일반항을 나타내는 식에서는 n이라는 문자 대신 k라는 문자를 나타냈어요.
읽을 때는 “시그마 k가 1부터 n까지일 때, a k ” 또는 “k가 1부터 n까지일 때, a k 의 합”이라고 읽어요.
“일반항이 a n 인 수열의 제5항부터 제10항까지의 합을 구하여라.”를 간단히 아래처럼 나타낼 수 있겠죠?
다음을 ∑를 사용하여 나타내어라.
(1) 1 + 2 + 3 + 4 + … + 99 + 100
(2) 4 + 7 + 10 + … + 79 + 82
(1)은 자연수네요. 이 수열의 일반항은 a n = n이에요. 1은 제1항이고 100은 제100항이죠? 그러니까 일반항이 n인 수열의 제1항부터 제100항까지 더하는 거네요.
(2)의 일반항을 구해보죠. d = a 2 – a 1 = 3, a 1 = 4이므로 a n = 4 + (n – 1) × 3 = 3n + 1
마지막 항이 82인데, 이게 몇 번째 항인지 알아야겠죠?
3n + 1 = 82
n = 27
일반항이 3n + 1인 수열의 제1항부터 제27항까지의 합을 구하는 거네요.
괄호를 빠뜨리지 않도록 주의하세요.
∑가 사용된 식
이번에는 거꾸로 수열의 합을 나타내는 식을 보고 그 값을 구해보죠.
일단 문자는 k고, 일반항이 k에 대한 식이에요. 시작 항은 2고 마지막 항은 5죠. 일반항이 (k + 1)인 수열의 제2항부터 제5항까지 더하라는 거예요.
a n : (1 + 1), (2 + 1), (3 + 1), (4 + 1), (5 + 1), …, (n – 1 + 1), (n + 1)
a 2 ~ a 5 까지 더하는 거니까 3 + 4 + 5 + 6 = 18이네요.
이처럼 수열을 쓰고 해당하는 항을 더할 수도 있지만, 더 쉽게 하려면 (k + 1)이라는 식의 k자리에 2부터 5까지 대입해서 얻은 항들을 더해서 바로 구할 수도 있어요.
함께 보면 좋은 글
등차수열, 등차수열의 일반항
등차수열의 합, 등차수열의 합 공식
등비수열, 등비수열의 일반항, 등비중항
등비수열의 합, 등비수열의 합 공식
정리해볼까요 여러 가지 수열의 합
그리드형(광고전용)
[수학I] 31. 수열의 합 ∑(시그마)의 뜻과 성질 (개념+수학문제)
* 같이 보면 좋은 글
📄 등차수열의 합
📄 배수의 합, 서로소인 수의 합
📄 등비수열의 합
* ∑ : 수열의 합
일반항을 아는 수열의 합이 주어진다면 어떻게 간단하게 표현할 수 있을까요?
1+2+3+4+…+10은
수열 1,2,3,…,10에 대하여 제1항부터 제10항까지 더한 값입니다.
그리고 일반항은
과 같이 나타낼 수 있습니다.
이때 우리는 기호 ∑를 이용하여 수열의 합을 간단하게 나타낼 수 있습니다.
∑는 시그마로 읽고 다음과 같을 때 나타낼 수 있습니다.
[참고] 시그마의 아래 부분은 제 1항부터 더한다는 뜻입니다. [참고] 시그마의 윗 부분은 제 n항까지 더한다는 뜻입니다. [참고] a_k는 일반항을 의미합니다. 이때 시그마의 아래 부분에서 선언한 변수에 대한 일반항입니다.* ∑를 이용하여 수열의 합 나타내기
∑를 이용하여 수열의 합을 나타내는 방법은 다음과 같습니다.
위에서 든 예를 다시 가져와보면,
1+2+3+…+9+10은
수열 1,2,3,…,10의 제1항에서 제10항까지 더한 값입니다.
그리고 제n항일 때 일반항은 n입니다.
이를 시그마로 나타내어보면
로 나타낼 수 있습니다.
* ∑의 성질
∑(시그마)는 다음과 같은 성질을 가집니다.
대강 해석해보면
1) 두 수열의 합의 제1항부터 제n항까지의 합은 각 수열의 제1항부터 제n항까지의 합을 더한 것과 같다.
2) 두 수열의 차의 제1항부터 제n항까지의 합은 각 수열의 제1항부터 제n항까지의 합을 뺀 것과 같다.
3) 수열에 상수가 곱해진 값의 합은 수열의 합에 상수를 곱한 것과 같다.
4) 제1항부터 제n항까지 상수의 합은 상수와 n을 곱한 것과 같다.
입니다.
[참고] 수열의 곱이 주어진 상황에서는 시그마를 떼어놓을 수 없습니다. [참고] 수열의 첫째항과 마지막항이 같지 않은 상태에서는 시그마의 성질을 적용할 수 없습니다.대신, 수열의 마지막 항을 맞추면 적용할 수 있습니다. 첫번째 수열의 합을 제9항까지의 합으로 바꾸는 것이죠.
(제 1항부터 제10항까지의 합) = (제1항부터 제9항까지의 합)+제10항
임을 이용합니다.
* 자연수의 거듭제곱의 합
자연수의 거듭제곱의 합을 ∑로 나타내었을 때 다음 식이 성립합니다.
k, k^2, k^3의 합은 다항식 꼴인 일반항을 가진 수열의 합을 구할 때 필요한 식입니다.
k의 합을 구할 줄 안다면
k^2과 k^3의 합을 쉽게 유도할 수 있습니다.
* 학습지 미리보기
* 첨부파일
2020SP H2-31.pdf 0.14MB
* 닫는 말
이번 학습지는 시그마 꼴로 주어진 수열의 합을 계산하는 유형으로 담았습니다. 시그마의 뜻과 성질을 이해하고, 자연수의 거듭제곱의 합을 구하면 수열의 합을 계산할 수 있습니다. 문제를 풀어보며 시그마를 계산해봅시다.
✔ 저작물 관련 유의사항
– 본 저작물(문제 및 그림)은 학습지 제작소에 있으며, 비상업적, 상업적 이용이 가능합니다.
– 저작물을 사용 시 출처를 밝힌 후, 자유롭게 사용이 가능합니다.
– 학습지제작소의 저작물을 2차 배포하거나, 제 3자에게 제공하거나, 또는 출판하는 행위(ISBN이 포함된 서적으로 출판)는 엄격히 금지합니다.
Copyright. 2020. 학습지제작소. All Rights Reserved.
더보기 #태그 : 고2, 수학I, 수열의 합, 시그마, 수열의 합 공식, 시그마 공식, 자연수의 거듭제곱의 합 공식, 학습지제작소
수열의 합, 시그마(∑) :: 기본 공식까지 다지기
이번에 다뤄볼 주제는, 시그마($\sum$) :: 수열의 합입니다. 시그마를 잘 배워둔다면 앞으로 여러 가지 수열들의 합을 구할 때 흔히 말하는 하나하나 계산하는 과정 없이 공식만으로 아주 쉽고 편리하게 구할 수 있게 될 것입니다. 일단, 본론에 앞서, 처음 접하시는 분들은 시그마가 어려워 보이실 수 있는데, 절대 그렇지 않습니다! 잘 따라와 주세요.
시그마, 혹은 수열의 합의 정의: 수열 ${a_n}$의 첫째 항부터 제 $n$ 항까지의 합을 기호 $\sum$로 나타내고 합을 나타내는 영어의 Sum의 첫 글자 S에 해당하는 그리스 문자로, “시그마(sigma)”라고 읽는다. 표현: $a_1+a_2+a_3+\cdots+a_n = \displaystyle \sum_{k=1}^n a_k$
정의로만 보기에는 아직 낯섦이 있기에, ‘$2+4+6+8+10$’을 시그마로 나타내 봅시다:
$\displaystyle \sum_{n=1}^5 2n$
해석해보자면, n에 1부터 5까지 2n에 대입하여 더하는 것이라고 할 수 있습니다. 그래서, $\displaystyle \sum_{n=1}^5 2n$ = 2+4+6+8+10가 되는 것입니다. 슬슬 감이 오시죠? 다음으로, $\sum$의 기본 성질을 알아봅시다.
시그마도, 성립하는 연산법칙들이 있습니다.
첫번째는, 시그마에 사용하는 일반항이 합으로 연결돼있다면, 이렇게 시그마 두 개로 분리할 수 있습니다. 어떻게 가능한지 간단하게 확인해봅시다.
이렇게 나열해보니, 한 눈에도 보일 정도로 간단하게 정리가 됩니다. 덧셈은 교환 법칙이 성립하여, 계산 순서가 바뀌어도 성립하여
위의 두 식은 같다는 것을 알 수 있습니다.
뺄셈에 대해서도 성립합니다.
둘째는, 분배 법칙에 해당하는 성질입니다.
이는 시그마의 일반항 부분에 있는 계수를 시그마 앞으로 묶어낼 수 있다는 것입니다. 이 역시, 나열해보면 쉽게 확인할 수 있습니다.
c가 모든 항에 대해 공통인수가 되기 때문에, 묶일 수 있어서, 시그마 앞으로 꺼낼 수 있게 되는 것입니다. 여기서 주의할 점은 상수가 아니고 k와 같이 상수가 아닌 변수라면 뺄 수 없습니다. k는 계속 변하는 변수이기 때문에, 성립하지 않기 때문입니다.
마지막으로, 일반항에 상수가 있는 경우입니다.
(c는 상수)
c는 변하지 않아 결국, ‘c’를 n번 더하게 되어 $cn$이 되는 것입니다.
자, 지금까지 시그마의 정의, 성질을 알아보았습니다. 마무리 전, 시그마를 계산할 때 쓰게 될 시그마의 기본 공식들을 정리해 놓았습니다.
시그마 기본 공식들
궁금한 내용이나 오류 제보 댓글로 남겨주세요! 감사합니다.
So you have finished reading the 수열 의 합 시그마 topic article, if you find this article useful, please share it. Thank you very much. See more: 수열의 합 시그마 공식, 시그마 계산법, 수열의 합 공식, 등비수열 시그마, 등비수열의 합, 시그마 변형, 수열의 합 문제, 시그마 합 공식